Abstract:
An optical module includes a flexible printed circuit board on which a light receiving element and/or a light emitting element is mounted face-down as an optical element, and having a part that transmits incoming light to the light receiving element and/or outgoing light from the light emitting element; a lens member disposed on a surface of the printed circuit board, on which the optical element is not mounted, and integrally formed to have within a predetermined area, a lens that transmits the incoming and/or the outgoing light, and a convex part abutting the printed circuit board; a bonding member disposed in an area other than the predetermined area, between the printed circuit board and the lens member, and that bonds the printed circuit board and the lens member; and a cooling member disposed to apply pressure to the optical element toward the printed circuit board and cool the optical element.
Abstract:
An optical transceiver device includes a baseplate including a set position for mounting an optical element, an alignment plate including a mounting unit, a first and a second reference hole. The device includes an optical-fiber fixing block configured to fixedly mount at least one of a lens unit and an optical fiber optically linked with the optical element and to include a first and a second post, and a housing for enclosing the optical-fiber fixing block and alignment plate. The second post is inserted into the second reference hole in a looser manner than inserting the first post into the first reference hole, and the set position is determined by a first baseline passing through the first and the second reference hole and by a second baseline intersecting with the first baseline and positioned on opposite side of the second reference hole with respect to the first reference hole.
Abstract:
The invention relates to a device (100a, 100b, 100c, 100d, 100e, 100f) for coupling optical signals into at least one waveguide (10), which device comprises at least one electro-optical converter (28), which emits the optical signals in the direction of the axis or of the core (12) of the waveguide (10). In order to further develop said device in such a way that active alignment of the waveguide (10) is not required, the receiving-side optical subassembly (80) according to the comprises at least one guide channel (86) for aligning the waveguide (10) in relation to the optoelectrical converter (68), in particular in relation to the inlet opening or active surface (70) of the electro-optical converter (68), and the optoelectrical converter (68) is accommodated, in particular embedded, in at least one receiving-side optical subassembly (80). The same applies, accordingly, to a device (140) for coupling optical signals out of at least one waveguide (10).
Abstract:
The electronic device comprises a body (40) of electrically insulating material that is provided with a through-hole or cavity. In the cavity or through-hole an electric component (20) is present. This component is attached to the body through an attachment layer (13). The surface of this attachment layer is provided with a pattern of electrical conductors for electrically coupling the component to other components and/or contact means for external coupling. At least one of which electrical conductors extends to a surface of the body.
Abstract:
An optical waveguide device production method which ensures that a receptacle structure can be easily and highly accurately produced in a single step, an optical waveguide device produced by the method, and an optical waveguide connection structure to be used for the optical waveguide device. The optical waveguide device includes a light emitting element (21) mounted on an upper surface of a board (20), and a core layer (29) which seals the light emitting element (21). The core layer (29) has an optical waveguide insertion recess (25) and an optical coupling lens (27) unitarily formed in a portion thereof opposed to a light emitting surface of the light emitting element (21). One end of an optical waveguide (30) is inserted in the recess (25) and fixed by a sealing resin (31). Thus, the optical waveguide (30) is optically coupled with a light emitting/receiving point of the light emitting element (21) in the core layer (29).
Abstract:
An electronic switching component (1) with gallium arsenide-based field effect transistors has its own housing (2) with at least one transparent section (3). An electronic microwave circuit (10) has at least one electronic switching component (1) with gallium arsenide-based field effect transistors and its own housing (2) with at least one transparent section (3). The at least one electronic switching component (1) can be illuminated by means of at least one light source (6, 11).
Abstract:
The electronic device comprises a body (40) of electrically insulating material that is provided with a through-hole or cavity. In the cavity or through-hole an electric component (20) is present. This component is attached to the body through an attachment layer (13). The surface of this attachment layer is provided with a pattern of electrical conductors for electrically coupling the component to other components and/or contact means for external coupling. At least one of which electrical conductors extends to a surface of the body.
Abstract:
An encapsulated optocomponent (1) comprises a single-crystal silicon wafer (3) and waveguides (9) located thereon, which at least partly are manufactured by means of process methods taken from the methods for manufacturing electronic integrated circuits. The waveguides (9) extend from an edge of the optoelectronic component (1) to an optoelectronic, active or passive component (11) attached to the surface of the silicon wafer (3). Over the region for connecting the waveguides (9) to the optoelectronic component (11) a transparent plastics material is molded (17), for instance an elastomer, having a refractive index adjusted to improve the optical coupling between the waveguides (9) and the optoelectronic component (11). The molding (17) covers advantageously all of said component (11) to also reduce thermal stresses between it and an exterior, protective layer (19) of a curable plastics material. The molded layer (17) can also cover the whole area of the waveguides (9) to form an upper cladding thereof. Guide grooves (5) are arranged in the silicon wafer (3) for positioning guide pins (7), utilized in the connection of the optocomponent (1) to another optocomponent having guides for guide pins and waveguides configured in the same way.
Abstract:
An optoelectronic assembly (300) includes a laser (102) for emitting light along a main optical path. Beam splitters (110, 114) split a proportion of light from the main optical path and the split light is guided by optical light guides (310) to a photodiode array (302). The light guides (310) are mouldable and substantially rigid and can be co fabricated as a single assembly including fiducials to facilitate positioning on a substrate (124) of the assembly (300). By having the array (302) adjacent the periphery of the substrate (124), wirebonds (308) need only be provided directly from the array (302) to a feed-through (130), and electrical tracks on the substrate and ceramic blocks for mounting the photodiodes are eliminated, as is individual placement of the ceramic blocks on the substrate.