Abstract:
A method begins by a first device obtaining data for transmission to a second device and partitioning the data to produce a plurality of data portions. The method continues with the first device dispersed storage error encoding the plurality of data portions using a plurality of sets of error coding dispersal storage function parameters to produce a plurality of sets of encoded data slices and transmitting the plurality of sets of encoded data slices to the second device via a network. The method continues with a second device receiving at least a decode threshold number of encoded data slices and dispersed storage error decoding the at least a decode threshold number of encoded data slices to produce a decoded data portion for each set of the plurality of sets of encoded data slices. The method continues with the second device recapturing the data from a plurality of decoded data portions.
Abstract:
An error judging circuit includes a first EOR circuit tree that generates a check bit of a correction code by polynomial remainder calculation with respect to a polynomial expression of an original code which is protected from an error with respect to data of m bit block unit by addition in a Galois extension field GF (2 m ) in S m EC-D m ED using Reed-Solomon code, a second EOR circuit tree for generating syndromes from S n =Y(α n ) with respect to code C(x) in which the check bit is added to the original code when a polynomial representation of a code which is to be detected an error and has a possibility that an error is mixed is Y(x), and an error detection circuit unit that detect if there is a one block error, a two block error, or no error based on whether or not an equation of syndromes S 1 2 =S 0 S 2 is satisfied.
Abstract translation:错误判定电路包括第一EOR电路树,其通过多项式余数计算生成校正码的校验位,该原始码的原始码的多项式表达式相对于m位块单元的数据通过加法而被保护免于错误 在使用Reed-Solomon码的S m EC-D m ED中的Galois扩展字段GF(2m)中,使用第二EOR电路树,用于相对于代码C(x)从S n = Y(±n)生成校正子 当检测到错误的代码的多项式表示和混合错误的可能性为Y(x)时,校验位被添加到原始代码的错误检测电路单元,检测是否存在 基于是否满足综合征方程S 1 2 = S 0 S 2的方程组错误,两个块错误或没有错误。
Abstract:
Error correction circuitry attempts to detect and correct on the fly erroneous words within random access memory (RAM) within a computer system. RAM errors are scrubbed or corrected back in the memory without delaying the memory access cycle. Rather, the address of the section or row of RAM that contains the correctable error is latched for later used by an interrupt-driven firmware memory-error scrub routine. This routine reads and rewrites each word within the indicated memory section-the erroneous word is read, corrected on-the-fly as it is read, and then rewritten back into memory correctly. If the size of the memory section exceeds a predetermined threshold, then the process of reading and re-writing that section is divided into smaller sub-processes that are distributed in time using a delayed interrupt mechanism. Duration of each memory scrubbing subprocess is kept short enough that the response time of the computer system is not impaired with the housekeeping task of scrubbing RAM memory errors. System management interrupts and firmware may be used to implement the memory-error scrub routine, which makes it independent of and transparent to the various operating systems that may be run on the computer system.
Abstract:
A method and apparatus for detecting errors in data output from memory and a device failure in the memory. In the invention, a check code is generated based on data to be input to the memory. The check code is valid when equal to zero. The check code is inverted and input along with the data as a codeword to the memory in response to a write command. The codeword is output from the memory in response to a read command. The codeword output from memory indicates whether a device in memory has failed. The inverted check code included in the codeword output from memory is re-inverted. Information indicating whether the data included in the codeword output from memory includes an error is generated based on the data and the codeword including the check code.
Abstract:
The data contents of memory systems are mostly safeguarded via an EDC method. The memory system is structured such that the recognizability of multi-bit errors is improved considerably by the EDC method.
Abstract:
Error correction circuitry attempts to detect and correct on the fly erroneous words within random access memory (RAM) within a computer system. RAM errors are scrubbed or corrected back in the memory without delaying the memory access cycle. Rather, the address of the section or row of RAM that contains the correctable error is latched for later used by an interrupt-driven firmware memory-error scrub routine. This routine reads and rewrites each word within the indicated memory section-the erroneous word is read, corrected on-the-fly as it is read, and then rewritten back into memory correctly. If the size of the memory section exceeds a predetermined threshold, then the process of reading and re-writing that section is divided into smaller sub-processes that are distributed in time using a delayed interrupt mechanism. Duration of each memory scrubbing subprocess is kept short enough that the response time of the computer system is not impaired with the housekeeping task of scrubbing RAM memory errors. System management interrupts and firmware may be used to implement the memory-error scrub routine, which makes it independent of and transparent to the various operating systems that may be run on the computer system.
Abstract:
The bits of a data block are assigned to a plurality of logical groups such that at most one bit corresponding to a component is assigned to a logical group. This assignment ensures that a component failure may introduce at most one bit error to a logical group. A number of bits in a logical group is selected to reduce the number of check bits for a given number of data bits. Error correction may be performed within each logical group to correct single errors within the logical group. Because each logical group is assigned at most one bit corresponding to a component, component failures may be detected and corrected.
Abstract:
A system for N-bit part failure detection using n-bit error detecting codes where n is less than N is disclosed. In a computer system having storage devices N bits wide and an error detection and correction capability of less than N bits, bit assignments are made so that storage device failures will be detectable because of the manner the effect of a part failure is distributed among multiple codewords. Consequently 8 and 16 bit wide DRAMs may be used in a memory system using error detection and correction codes which are not capable of detecting 8 or 16 bit errors in a codeword, and still preserve the ability to detect the worst errors possibly caused by a part failure. Further, since error detection and correction codes with a predefined error detection and correction capability generally do not double in number of bits required when the data portion of a codeword doubles, the present invention allows use of the remaining bits when using larger data words, not only for special data, but also for another error detection and correction code for the special data, all still preserving the ability to detect any part failures, even when a part failure causes a number of total bit errors far exceeding the error detection capability of the error detection and correction codes.