-
公开(公告)号:EP4399370A1
公开(公告)日:2024-07-17
申请号:EP22866868.7
申请日:2022-09-12
发明人: MESONES AURICH, Mauricio , PORTUGAL ZAMBRANO, Christian , VIVANCO OLIVERA, Eder Joel , CARPIO REYNOSO, Yherico Alberto , VALERIO OGOSI, Marlon Arnaldo
IPC分类号: E02F9/26 , E02F9/20 , E02F9/28 , G06T7/00 , G06N3/04 , G06N3/08 , H04N7/18 , G06V10/44 , G07C5/08
CPC分类号: G06T2207/3016420130101 , G06T2207/2008420130101 , G06T2207/1001220130101 , G06T2207/1002420130101 , G06T2207/1002820130101 , G06T7/0004 , G07C5/0808 , E02F9/267 , E02F9/2808 , E02F9/264 , E02F3/435 , E02F9/0858 , G06V10/82 , G06V2201/1220220101 , G06V20/56 , H04N7/188 , G06N3/0442 , G06N3/0464 , G06N3/09
-
公开(公告)号:EP3869464B1
公开(公告)日:2024-05-15
申请号:EP21168900.5
申请日:2018-11-23
-
公开(公告)号:EP3871603B1
公开(公告)日:2024-05-08
申请号:EP21156134.5
申请日:2021-02-09
CPC分类号: A61B6/502 , A61B6/5235 , A61B6/482 , A61B6/488 , A61B6/4241 , A61B6/025 , A61B6/0414 , G06T7/0012 , G06T7/50 , G06T7/337 , G06T7/248 , G06T2207/1011620130101 , G06T2207/3006820130101 , G06T2207/3020420130101 , G06T2207/3009620130101 , G06T2207/1001220130101
-
公开(公告)号:EP4354394A2
公开(公告)日:2024-04-17
申请号:EP23202670.8
申请日:2023-10-10
申请人: Globus Medical, Inc.
CPC分类号: G06T2207/1001220130101 , G06T2207/1004820130101 , G06T2207/2008420130101 , G06T2207/2008120130101 , G06T7/248 , A61B2034/205520160201
摘要: A camera tracking system for computer assisted navigation during surgery. Operations identify locations of markers of a reference array in images obtained from tracking cameras imaging a real device. Operations determine measured coordinate locations of a feature of a real device in the images based on the identified locations of the markers and based on a relative location relationship between the markers and the feature. Operations process a region of interest in the images identified based on the measured coordinate locations through a neural network configured to output a prediction of coordinate locations of the feature in the images. The neural network has been trained based on training images containing the feature of a computer model rendered at known coordinate locations. Operations track pose of the feature of the real device in 3D space based on the prediction of coordinate locations of the feature of the real device in the images.
-
公开(公告)号:EP3489898B1
公开(公告)日:2024-09-25
申请号:EP18189033.6
申请日:2018-08-14
IPC分类号: G06T7/593
CPC分类号: G06T2207/2008420130101 , G06T7/593 , G06T2207/1001220130101
-
6.
-
公开(公告)号:EP4392737A1
公开(公告)日:2024-07-03
申请号:EP22859737.3
申请日:2022-08-23
申请人: Moleculight Inc.
IPC分类号: G01B11/245 , A61B5/00 , A61B5/107 , G01B11/00
CPC分类号: G06T7/62 , G06T7/0012 , G06T2207/3008820130101 , G06T2207/1001220130101 , G06T2207/1002820130101 , H04N13/239 , H04N13/246 , G03B35/10
-
公开(公告)号:EP3547682B1
公开(公告)日:2024-05-22
申请号:EP19164138.0
申请日:2019-03-20
IPC分类号: H04N25/61 , G06T5/80 , H04N13/239 , H04N13/271
CPC分类号: H04N13/239 , H04N13/271 , G06T2207/1001220130101 , H04N23/951 , H04N25/61 , G06T5/80
-
公开(公告)号:EP4005379B1
公开(公告)日:2024-04-24
申请号:EP21201994.7
申请日:2021-10-11
-
公开(公告)号:EP4432231A2
公开(公告)日:2024-09-18
申请号:EP24171265.2
申请日:2018-08-17
申请人: Adeia Imaging LLC
IPC分类号: G06T7/593
CPC分类号: G06T5/30 , G06T5/50 , G06T2207/2002820130101 , G06T2207/2003220130101 , G06T2207/2003620130101 , G06T2207/2019220130101 , G06T7/136 , G06T7/593 , G06T7/13 , G06T2207/1001220130101
摘要: A computer-implemented depth sensing method, comprising: obtaining (302) image data for a plurality of images from multiple viewpoints, wherein the image data for the plurality of images comprises a reference image (400) and at least one alternate view image; generating a raw depth map (410) containing depth estimates for pixels within the reference image (400) using the image data for the reference image (400) and the image data for the at least one alternate view image using a first depth estimation process, and a confidence map (420) describing reliability of depth estimates contained within the raw depth map (410), wherein generating the raw depth map (410) and the confidence map (420) further comprises: measuring parallax observable between the reference image (400) and the at least one alternate view image by comparing the similarity of a pixel in the reference image (400) to pixels in the at least one alternate view image determined based upon a plurality of depth samples using a cost function; and estimating, based upon the measured parallax, depth for the pixel in the reference image (400) by identifying the sampled depth at which the cost function for a pixel in the reference image (400) indicates the strongest match as being the estimated depth of the pixel; generating a regularized depth map (480) by: computing a secondary depth map (430) containing depth estimates for pixels within the reference image (400) using a second depth estimation process different from the first depth estimation process by: generating cost volume using costs determined using the cost function at each sampled depth; and computing the secondary depth map (430) based on the cost volume; and computing a first composite depth map (440) by selecting depth estimates from the raw depth map (410) and the secondary depth map (430), where a depth estimate for a pixel in the reference image (400) is selected from the raw depth map (410) when the depth estimate is indicated as being reliable by the confidence map (420).
-
-
-
-
-
-
-
-
-