摘要:
A surface emission type electron source according to the present invention includes a first electrode having a planar form; a second electrode having a planar form facing the first electrode; an electron passage layer disposed between the first electrode and the second electrode; and a power source part configured to apply a voltage to the second electrode and the first electrode. The electron passage layer includes plural quantum wires extending in a first direction from the first electrode to the second electrode. The quantum wires are spaced apart from each other at predetermined intervals, and electrons are emitted from a front surface of the second electrode. The quantum wires are made of silicon, and each of the quantum wires has plural thin parts having small thicknesses formed at predetermined intervals along the first direction.
摘要:
Disclosed is an electron source 10 including an electron source element 10a formed on the side of one surface of an insulative substrate 1. The electron source element 10a includes a lower electrode 2, a composite nanocrystal layer 6 and a surface electrode 7. The composite nanocrystal layer 6 includes a plurality of polycrystalline silicon grains 51, a thin silicon oxide film 52 formed over the surface of each of the grains 51, a number of nanocrystalline silicons 63 residing between the adjacent grains 51, and a silicon oxide film 64 formed over the surface of each of the nanocrystalline silicons 63. The silicon oxide film 64 is an insulating film having a thickness less than the crystal grain size of the nanocrystalline silicon 63. The surface electrode 7 is formed of a carbon thin film 7a laminated on the composite nanocrystal layer 6 while being in contact therewith, and a metal thin film 7b laminated on the carbon thin film 7a.
摘要:
Provided is a piezoelectric-film-type electron emitter which enables suppression of reduction of electron emission quantity due to repeated use thereof, and which exhibits high durability. The electron emitter includes a substrate (11); an emitter section (12) formed of a dielectric material; a first electrode (14) formed on the top surface of the emitter section; and a second electrode (16) formed on the bottom surface of the emitter section. The dielectric material forming the emitter section contains a dielectric composition having an electric-field-induced strain (i.e., percent deformation under application of an electric field of 4 kV/mm, as measured in a direction perpendicular to the electric field) of 0.07% or less.
摘要:
A dielectric device of higher performance is provided. An electron emitter (12), to which the dielectric device is applied is provided with: an emitter including a dielectric; and an upper electrode (14) and a lower electrode (16) to which drive voltage is applied in order to emit electrons. The emitter is formed by the aerosol deposition method or the sol impregnation method, and the surface roughness of the upper surface thereof is controlled in the range from 0.1 to 3 in Ra.
摘要:
An upper wiring electrode (16) serving as a power feed line to an upper electrode (13) of a thin-film type electron source array is underlaid with a second layer insulation layer (15) to prevent a short circuit. The electron emission part is limited by the second layer insulation layer (15) to cover defects unevenly distributed over the boundary between an electron acceleration layer (12) and a first layer insulation layer (14), so that insulation breakdown with time is prevented.
摘要:
An electron-emitting apparatus includes an electron-emitting element having a lower electrode, an emitter section having a dielectric material, and a plurality of upper electrodes having micro through holes, and a drive voltage applying circuit having a circuit for applying a drive voltage Vin between the lower electrode and the upper electrode. The drive voltage applying circuit applies the drive voltage between the lower electrode and the upper electrode to set an element voltage Vka, which is a potential of the upper electrode relative to a potential of the lower electrode, at a negative voltage for a charge accumulation period Td so as to accumulate electrons in the emitter section, and to set the element voltage Vka at a predetermined positive voltage for an electron emission period Th so as to emit electrons from the emitter section. Further, the drive voltage applying circuit stepwise increases the positive voltage during the electron emission period Th and separately emits the electrons accumulated in the emitter section a plurality of times.
摘要:
An electron-emitting device includes an emitter section composed of a dielectric material, a lower electrode disposed on the lower side of the emitter section, and an upper electrode disposed on the upper side of the emitter section so as to be opposed to the lower electrode with the emitter section therebetween, electrons being emitted from the emitter section through the upper electrode by the application of a drive voltage between the lower electrode and the upper electrode, wherein the upper electrode is provided with a plurality of through-holes which expose the emitter section and which have an average diameter of 10 nm or more and less than 100 nm, and a peripheral portion of each through-hole facing the emitter section is separated at a predetermined distance from the emitter section.
摘要:
A method of generating ballistic electrons with a high controllability by applying an electric field to a nano-structure micro-crystal layer or a semi-insulating layer of a semiconductor to generate ballistic electrons or quasiballistic electrons by a multiple-tunnel effect; and a semiconductor device used in this method and provided with a practical material constitution.