Abstract:
A solar module racking system including a frame. The frame includes pre-wired receptacles for rapid assembly of solar modules. The frame receives and mechanically supports each solar module. The frame arranges the solar modules in a first planar direction, in a second planar direction, and in a vertical direction that is normal to the first and second planar directions. Each pre-wired receptacles individually and electrically connect each of the solar modules after insertion of that module into the frame. The solar module racking system provides a 2 by 1 by 1 configuration or a 1 by 2 by 1 configuration for the plurality of solar modules corresponding to the first planar direction, the second planar direction, and the vertical direction. A first module and a second module are arranged in the first planar direction or the second planar direction, respectively.
Abstract:
A method and system for connecting a plurality of materials using pressure and curing is disclosed. The method provides for: a) receiving the plurality of materials on the vacuum conveyor; b) conveying the received plurality of materials from the first location to a second location along the vacuum conveyor; c) applying a predetermined vacuum pressure; and d) curing the compressed plurality of materials. The system comprises a vacuum conveyor for receiving the plurality of materials at a first location, a moving belt adaptively positioned above the vacuum conveyor at a second location and the vacuum conveyor and the moving belt are arranged to be driven in a predetermined relation to one another, a vacuum pressure source for applying a predetermined vacuum pressure creating a force compressing the plurality of materials; and a curing source at a second location for curing the compressed plurality of materials.
Abstract:
According to some embodiments, the present invention provides a novel photovoltaic solar cell system from photovoltaic modules that are vertically arrayed in a stack format using thin film semiconductors selected from among organic and inorganic thin film semiconductors. The stack cells may be cells that are produced in a planar manner, then vertically oriented in an angular form, also termed herein tilted, to maximize the light capturing aspects. The use of a stack configuration system as described herein allows for the use of a variety of electrode materials, such as transparent materials or semitransparent metals. Light concentration can be achieved by using fresnel lens, parabolic mirrors or derivatives of such structures. The light capturing can be controlled by being reflected back and forth in the photovoltaic system until significant quantities of the resonant light is absorbed. Light that passes to the very end and can be reflected back through the device by beveling or capping the end of the device with a different refractive index material, or alternatively using a reflective surface. The contacting between stacked cells can be done in series or parallel. According to some embodiments, the present invention uses a concentrator architecture where the light is channeled into the cells that contain thermal fluid channels (using a transparent fluid such as water) to absorb and hence reduce the thermal energy generation.