摘要:
The present invention provides a transmission method for a physical layer operations, administration and maintenance (PLOAM) message in a passive optical network. The method includes: a transmitter dividing a PLOAM message to generate more than two new PLOAM messages, each of which comprises at least a message identification (Message ID) field (1501); and the transmitter transmitting the new PLOAM messages identified with Message IDs (1502). The invention also provides an assembling method for a PLOAM message in a passive optical network and a transmission device for a PLOAM message in a passive optical network. By using the method of the invention, the invention improves the efficiency of the PLOAM message transmission, avoids bandwidth waste, and simultaneously improves the flexibility and timeliness of the PLOAM message transmission between an OLT and an ONU.
摘要:
An optical transmitter includes: a mapper configured to generate an electric-field-information signal from transmission data; a training-signal-generation section configured to generate a training signal; a training-signal-insertion section configured to insert the training signal into the electric-field-information signal; a driver configured to generate a drive signal from the electric-field-information signal into which the training signal is inserted; a modulator configured to generate an optical-modulation signal based on the drive signal; an optical receiver configured to generate an intensity signal indicating intensity of the optical-modulation signal; a training-signal-extraction section configured to extract an intensity-training signal corresponding to the training signal, from the intensity signal; a coder configured to generate a coded-training signal by coding the intensity-training signal extracted by the training-signal-extraction section using the training signal generated by the training-signal-generation section; and a distortion detection section configured to detect waveform distortion of the optical-modulation signal, based on the coded-training signal.
摘要:
A method for measuring asymmetry in propagation delay of first and second links which connect a first node to a second node of a communication network. The method comprises measuring (101) a round trip delay of the first link. The round trip delay can be measured by transmitting (102) a test signal from the first node to the second node over the first link and receiving a reply to the test signal from the second node over the first link. The method further comprises measuring (105) a round trip delay of the second link. The round trip delay can be measured by transmitting (106) a test signal to the second node over the second link and receiving a reply to the test signal from the second node over the second link. A difference in the propagation delay of the first link with respect to the second link is determined (109) using the measured round trip delays of the first link and the second link.
摘要:
The embodiments of the present invention relate to communications technology, and disclose an optical power measurement method, an Optical Line Terminal (OLT), and an Optical Network Unit (ONU). The method includes: generating a Physical Layer Operation Administration Maintenance (PLOAM) message that includes an identifier of an ONU to be measured and information about a time bucket that is allocated to the ONU to be measured and is used for sending upstream optical signals; sending the PLOAM message to the multiple ONUs; receiving the upstream optical signals that are sent, in the allocated time bucket, by the ONU to be measured; and detecting the received upstream optical signals, and determining the optical power of the upstream optical signals. The present invention avoid waste of bandwidth caused in the prior art when the DBA is required to allocate bandwidth to the ONU to be measured for the purpose of detecting the optical power.
摘要:
In the WDM communication system, in the absence of data to be transmitted on an optical channel, a pilot signal transmitting means (11A-4, 11B) transmits the channel-unique pilot signal data on the channel. A WDM communication apparatus on a receiving end detects the pilot signal data in the received WDM signals, and on the basis of the detection result, it evaluates whether each channel is used or not. It is thus easy to recognize which channel is unused (idle) of the WDM signals, so that channel resources can be used effectively according to the traffic.
摘要:
A WDM system (100) carrying a plurality of optical signals, each at a respective wavelength, is provided whereby each optical signal includes a plurality of frames, each frame conforming to a synchronous optical network (SONET) standard. A plurality of optical transmitter modules output a corresponding one of the plurality of optical signals, and each of a plurality of optical selectors (114) at a receiving end of the WDM system (100) selects a respective one of the plurality of optical signals. In addition, a plurality of receiver modules (116) are provided respectively connected to each of the optical selectors (114). Both the transmitter and receiver modules include byte extraction circuitry that extracts one byte, e.g., the JO byte, from each of the plurality of frames. Successive bytes are grouped as messages, which are stored in registers so that comparisons can be made between consecutive messages and a predetermined message.
摘要:
A performance monitoring method for an optically amplified transmission system. The method provides the optical power at each amplifier site, taking into account the inaccuracies introduced by the stimulated Raman scattering in the power estimation obtained with the current methods. An optical spectrum analyzer is used at the output of the transmission link of interest to accurately measure the output power of each wavelength. This value is sent upstream to the last amplifier in the link, to compute an error term as the difference between the actual measurement and the estimation. The error term is used to infer the SRS-induced error by system elements not accounted for in the model. The error term is then fed-back to each amplifier in the link, so that the estimated power is adjusted to account for the SRS-induced inaccuracy.
摘要:
The present invention has an object to obtain an optical signal quality supervisory device that supervises the quality of an optical signal simply, efficiently and with high accuracy without inviting an increase in cost, an increase in circuit scale and increase in power consumption. The bit rate of the optical supervisory channel is made lower than the bit rate of the optical main channel that is transmitted over an optical communication system, but the reception electric band width of a receiver that receives the optical supervisory channel is made equal to or wider than the reception electric band width of a receiver that receives the optical main channel. Also, the optical supervisory channel is made up of an SOH (section over head) frame to detect an error of the BIP (bit interleaved parity) byte of SOH, thereby supervising the quality of the optical communication system, in particular, the light wave network.
摘要:
A method of transmitting data signals via an optical fiber between two network elements (14, 36; 43, 56) in a digital data transmission network comprises using a transmission protocol, wherein, in addition to said data signals, first control and/or monitor signals in the form of overhead signals are transmitted. An optical fiber amplifier (23) is inserted in the optical fiber between the is two network elements. Additionally, second control and/or monitor signals in a format corresponding to said overhead signals are transferred between the optical fiber amplifier and at least one of the two network elements.An amplifier unit (22; 48) comprising an optical fiber amplifier (23) is adapted to be inserted in an optical fiber for the transmission of data signals between two network elements (14, 36; 43, 56) in such a data transmission network. The unit moreover comprises means to transfer second control and/or monitor signals in a format corresponding to said overhead signals between the unit and at least one of the two network elements.