Abstract:
A transmission apparatus according to the present invention includes: an encoding section; a modulation section; a variable-SF spreading section that performs spreading with variable SF according to control information A from a control section; an IDFT section that performs IDFT on output from the spreading section; a GI inserting section; a parallel/serial conversion section that converts output from the GI inserting section into a serial data sequence; a digital/analog conversion section; and an RF section that transmits a signal from an antenna after converting the signal to a frequency band for analog signal transmission and controlling it to an appropriate transmission power. The control section is configured to generate control information A for determining the variable SF and input the information A to the variable-SF spreading section and the RF section. In control information A, SF is varied depending on transmission power required.
Abstract:
Disclosed is a method for transmitting a channel signal in a base station of a mobile communication system which scrambles a common channel signal using a primary scrambling code for identifying the base station. The method comprises determining an identifier (ID) of a secondary scrambling code, upon receipt of a dedicated channel assignment request from a mobile station; transmitting the determined ID of the secondary scrambling code to the mobile station and awaiting a response; upon receipt of a response message from the mobile station, generating a primary scrambling code and a secondary scrambling code using an ID of the primary scrambling code and said ID of the secondary scrambling code; and scrambling a common channel signal using the primary scrambling code, scrambling a dedicated channel signal using the secondary scrambling code, and transmitting the scrambled channel signals.
Abstract:
A base station controller selects codes corresponding to rate information included in a new starting call message from a mobile station, and further selects codes assignable to the mobile station out of the selected codes as candidate codes. Then, the base station controller detects codes which meet both the characteristics of being at upper level of the candidate codes in the tree structure and being assignable to other mobile station, and further detects levels of the detected codes. Detected levels for all the candidate codes are compared to find a candidate code whose level is the lowest and to assign the candidate code to the mobile station sending the new starting call message.
Abstract:
An apparatus for performing data demodulation, comprising means for despreading to despread input samples and provide despread symbols for plurality of first code channels with a first spreading factor; means for multiplying to multiply the despread symbols for each of the plurality of first code channels with channel estimates and provide demodulated symbols for the first code channel; and means for combining to combine groups of demodulated symbols for each of the plurality of first code channels to obtain recovered data symbols for a set of second code channels with a second spreading factor and corresponding to the first code channel, the second spreading factor being an integer multiple of the first spreading factor and a corresponding method.
Abstract:
A method of allocating channels in a user equipment is disclosed. In particular, a method of allocating a plurality of Dedicated Physical Channels (DPCHs) and Enhanced Dedicated Channels (E-DCHs) in a user equipment of a multicode transmission system. The method includes determining whether a High Speed Downlink Shared Channel (HS-DSCH) is configured for the user equipment (UE) and determining a number of codes used by the DPCH and the E-DCH. The method further includes allocating the DPCH and the E-DCH channels to an I branch or a Q branch based on the number of codes used by the DPCH and the E-DCH and the HS-DSCH configuration.
Abstract:
A base station controller selects codes corresponding to rate information included in a new starting call message from a mobile station, and further selects codes assignable to the mobile station out of the selected codes as candidate codes. Then, the base station controller detects codes which meet both the characteristics of being at upper level of the candidate codes in the tree structure and being assignable to other mobile station, and further detects levels of the detected codes. Detected levels for all the candidate codes are compared to find a candidate code whose level is the lowest and to assign the candidate code to the mobile station sending the new starting call message.
Abstract:
A base station controller selects codes corresponding to rate information included in a new starting call message from a mobile station, and further selects codes assignable to the mobile station out of the selected codes as candidate codes. Then, the base station controller detects codes which meet both the characteristics of being at upper level of the candidate codes in the tree structure and being assignable to other mobile station, and further detects levels of the detected codes. Detected levels for all the candidate codes are compared to find a candidate code whose level is the lowest and to assign the candidate code to the mobile station sending the new starting call message.