摘要:
Die Erfindung betrifft einen Wärmetauscher (1) für zwei fluide Medien, insbesondere Flüssigkeiten, mit einem mit einem Deckel (4) verschließbarem Gehäuse (2) mit Zu- und Abläufen für die beiden Medien und mit einem Einsatz (3) für die getrennte Führung der beiden Medien unter Wärmeaustausch, wobei zumindest der Einsatz (3) als Druckgußteil herstellbar ist, bei welchem der Einsatz (3) im wesentlichen aus einem die Kanäle für die beiden Medien in Form von hohen, schmalen Kammern (51 - 53, 51ʹ bis 53ʹ; 61 - 61ʹʹʹ) bildenden, mäandrierend verlaufenden Wandungszug (30) gebildet ist, wobei benachbarte Kammern (51 - 53, 51ʹ - 53ʹ; 61 - 61ʹʹʹ) abwechselnd von dem einen und dem anderen Medium durchströmt sind, und bei welchem die Kammern (51 - 53, 51ʹ - 53ʹ; 61 - 61ʹʹʹ) jeweils durch eine gemeinsame, mit dem Wandungszug (30) einstückige, alle Kammern (51 - 53, 51ʹ - 53ʹ; 61 - 61ʹʹʹ) in der Höhe unterteilende Zwischenwandung (34) in nacheinander durchströmte, in zwei Ebenen angeordnete Teilkammern (51 - 53, 51ʹ - 53ʹ; 61 - 61ʹʹʹ) geteilt sind.
摘要:
Echangeur de chaleur; cet échangeur à fluides séparés comporte un corps monolithique, moulé en matière réfractaire, qui comprend en son sein, venus de moulage, au moins un canal (2) pour le fluide à réchauffer et au moins un canal (5) pour le fluide à refroidir en relation mutuelle d'échange de chaleur. Application à toutes industries avec des fluides corrosifs ou abrasifs, pour basses ou hautes températures.
摘要:
A ceramic honeycomb type recuperative heat exchanger has a large number of parallel channels defined by partition walls, in which fluids to be heat-exchanged are passed through respective channels, wherein the sectional shape of the channels and the thickness of the partition walls are uniform, the open frontal area of the heat transmitting portion where the fluids are heat-exchanged is more than 60%, and the porosity of the ceramic material forming the partition walls is not more than 10%. Such a heat-exchanger is suitably produced by extruding a ceramic raw batch material into a honeycomb structural body, drying the shaped honeycomb structural body, prior to or after a firing step, cutting off partition walls in given rows of the honeycomb structural body in the axial direction of the channels to a given depth from the end surface of the honeycomb structural body, and sealing only the end surfaces of said rows.
摘要:
The present invention concerns a method with associated equipment for feeding two gases into and out of a multi-channel monolithic structure. The two gases will normally be two gases with different chemical and/or physical properties. The gases, here called gas 1 and gas 2, are fed by means of a manifold head into channels for gas 1 and gas 2 respectively. Gas 1 and gas 2 are distributed in the monolith in such a way that at least one of the channel walls is a shared or joint wall for gas 1 and gas 2. The walls that are joint walls for the two gases will then constitute a contact area between the two gases that is available for mass and/or heat exchange. This means that the gases must be fed into channels that are spread over the entire cross-sectional area of the monolith. The present invention makes it possible to utilise the entire contact area or all of the monolith's channel walls directly for heat and/or mass transfer between gas 1 and gas 2. This means that the channel for one gas will always have the other gas on the other side of its channel walls, i.e. all adjacent or neighbouring channels for gas 1 contain gas 2 and vice versa. The present invention will be particularly applicable for making compact ceramic membrane structures and/or heat exchanger structures that must handle gases at high temperature. Typical applications are oxygen-conducting ceramic membranes, heat exchangers for gas turbines and heat exchanger reformers for production of synthetic gas.
摘要:
Echangeur thermique pour l'échange thermique entre deux milieux (Ma, Mb), s'écoulant chacun à travers l'une des deux chambres (A, B) séparées par une paroi de séparation (5) imperméable au milieu et à base d'un matériau thermiquement conducteur. L'intérieur de chaque chambre d'écoulement ou d'au moins une chambre d'écoulement, est divisé en un grand nombre de passages d'écoulement de milieu, connectés en parallèle par rapport à l'écoulement de milieu les traversant. Les passages d'écoulement (13 et 17) sont de section transversale essentiellement rectangulaire et dotés d'une zone d'écoulement conçue quant au milieu la traversant de telle manière que l'écoulement dans les passages est essentiellement laminaire sur toute la longueur des passages, sans zone turbulente centrale. Les parois des passages déterminant les passages d'écoulement sont à base d'un matériau fortement thermiquement conducteur et font partie intégrante de la paroi de séparation (5) située entre les deux chambres d'écoulement (A, B) ou sont en contact de conduction thermique avec celle-ci. La largeur (s) des passages d'écoulement parallèles à la paroi de séparation est d'au maximum 1,5 mm et de préférence inférieure à 1,0 mm. La hauteur (h) des passages d'écoulement, et donc des parois des passages à angles droits par rapport à la paroi de séparation est normalement inférieure à 8 mm et se situe souvent entre 2 et 5 mm, alors que l'épaisseur des parois des passages est normalement inférieure à 1 mm.
摘要:
The present invention concerns a method with associated equipment for feeding two gases into and out of a multi-channel monolithic structure. The two gases will normally be two gases with different chemical and/or physical properties. The gases, here called gas 1 and gas 2, are fed by means of a manifold head into channels for gas 1 and gas 2 respectively. Gas 1 and gas 2 are distributed in the monolith in such a way that at least one of the channel walls is a shared or joint wall for gas 1 and gas 2. The walls that are joint walls for the two gases will then constitute a contact area between the two gases that is available for mass and/or heat exchange. This means that the gases must be fed into channels that are spread over the entire cross-sectional area of the monolith. The present invention makes it possible to utilise the entire contact area or all of the monolith's channel walls directly for heat and/or mass transfer between gas 1 and gas 2. This means that the channel for one gas will always have the other gas on the other side of its channel walls, i.e. all adjacent or neighbouring channels for gas 1 contain gas 2 and vice versa. The present invention will be particularly applicable for making compact ceramic membrane structures and/or heat exchanger structures that must handle gases at high temperature. Typical applications are oxygen-conducting ceramic membranes, heat exchangers for gas turbines and heat exchanger reformers for production of synthetic gas.
摘要:
A heat exchanger for the exchange of heat between two media (Ma, Mb), each of which flows through a respective one of two chambers (A, B) mutually separated by a medium-impervious partition wall (5) made of thermal conductive material. The interior of each of the flow chambers, or at least of one flow chamber, is divided into a large number of medium-flow passages, which are connected in parallel with respect to the flow of medium passing therethrough. The flow passages (13, and 17) have a substantially rectangular cross-section having a flow area which is so adapted in respect of the medium flowing therethrough that the flow in the passages is substantially laminar throughout the whole length of the passages, without a central turbulent zone. The passage walls defining the flow passages comprise a highly thermal-conductive material and are formed integrally with, or in good heat-conducting contact with the partition wall (5) located between the two flow chambers (A, B). The width (s) of the flow passages parallel with the partition wall is at most 1.5 mm and preferably less than 1.00 mm. The height (h) of the flow passages, and therewith the passage walls, at right angles to the partition wall is normally less than 8 mm and often 2-5 mm, while the thickness of the passage walls is normally less than 1 mm.