摘要:
The present disclosure relates to a low temperature-calcined lead-free glass frit and paste, and a vacuum glass assembly using the same. The glass frit has a novel component system, in which phosphorus pentoxide (P 2 O 5 ), vanadium pentoxide (V 2 O 5 ), tellurium dioxide (TeO 2 ), copper oxide (CuO), barium oxide (BaO), zinc oxide (ZnO), bismuth oxide (Bi 2 O 3 ), and silver oxide (Ag 2 O) are included at a unique composition ratio according to the disclosure, and replaces a lead-based glass composition of the related art, is calcined at low temperature, includes no inorganic filter or include a minimum amount of an inorganic filler, has a coefficient of thermal expansion matching a coefficient of thermal expansion of a glass base material to prevent a separation or damage, and ensures excellent durability.
摘要:
An electronic device may have a glass housing structures. The glass housing structures may be used to cover a display and other internal electronic device components. The glass housing structure may have multiple glass pieces that are joined using a glass fusing process. A peripheral glass member may be fused along the edge of a planar glass member to enhance the thickness of the edge. A rounded edge feature may be formed by machining the thickened edge. Raised fused glass features may surround openings in the planar glass member. Multiple planar glass members may be fused together to form a five-sided box in which electronic components may be mounted. Raised support structure ribs may be formed by fusing glass structures to a planar glass member. Opaque masking material and colored glass may be used to create portions of the glass housing structures that hide internal device components from view.
摘要:
Certain example embodiments of this invention relate to vacuum insulating glass (VIG) units including infrared meltable glass frits, and/or methods of making the same. More particularly, certain example embodiments relate to increasing the amount of ferrous oxide in glass frits (e.g., lead-free glass frits) used to form edge seals such that the glass frits absorb an increased amount of IR energy. The techniques of certain example embodiments make it possible to expose some or all of the VIG intermediate assembly to infrared source(s), since the glass frit will heat up faster than the substrates thereby reducing the likelihood of the first and/or second substrate melting and losing heat treatment strength. In certain example embodiments, the frit's glass redox (FeO/Fe2O3) preferably is at least about 0.02 higher than either (or the higher) of the substrates' glass redox (FeO/Fe2O3), more preferably at least about 0.04 higher, and most preferably at least about 0.06 higher.
摘要:
The present invention discloses a vacuum glass sealing method and a sealing device using the method. The sealing device comprises a bottom plate, an annular side wall, a cover plate, a partition plate and a heating device, wherein the lower end of the annular side wall is situated on the bottom plate and air-tightly connected with the bottom plate; the cover plate is air-tightly covered at the upper end of the annular side wall; the partition plate is arranged on the middle part of the height direction of the annular side wall; after the periphery of the partition plate is air-tightly connected with the inner surface of the annular side wall, the partition plate divides the space encircled by the bottom plate, the annular side wall and the cover plate into a first closed space and a second closed space; and the two closed spaces are provided with an air extraction port for vacuumizing respectively.
摘要:
A low pressure air or vacuum glass and manufacturing method thereof, the low pressure air or vacuum glass comprising upper glass and lower glass; the upper glass and the lower glass are flat glass or convex glass; the peripheries of the upper glass and the lower glass are provided with an edge sealing bar frame and/or an edge sealing groove, and are welded together via a low temperature glass solder, thus forming a closed low pressure air layer or vacuum layer therebetween. The low pressure or vacuum glass is of simple manufacturing process, low cost, high production efficiency, reliable sealing connection, and good sealing effect.
摘要:
Provided is a heat-strengthened vacuum glass, comprising: a plurality of sheet glasses spaced apart by a predetermined interval; a plurality of spacers interposed between the sheet glasses to maintain the intervals between the sheet glasses; and a sealing material arranged along edges of the sheet glasses to seal and bond the sheet glasses. The heat-strengthened vacuum glass of the present invention has a surface compressive stress of 20 Mpa to 55 Mpa after the seal bonding of the sheet glasses, thus ensuring high thermal resistance, high strength, and, when damaged, high stability.
摘要:
The present invention discloses a vacuum glass sealing method and a sealing device using the method. The sealing device comprises a bottom plate, an annular side wall, a cover plate, a partition plate and a heating device, wherein the lower end of the annular side wall is situated on the bottom plate and air-tightly connected with the bottom plate; the cover plate is air-tightly covered at the upper end of the annular side wall; the partition plate is arranged on the middle part of the height direction of the annular side wall; after the periphery of the partition plate is air-tightly connected with the inner surface of the annular side wall, the partition plate divides the space encircled by the bottom plate, the annular side wall and the cover plate into a first closed space and a second closed space; and the two closed spaces are provided with an air extraction port for vacuumizing respectively.
摘要:
The present invention discloses a device for continuously processing vacuum glass member. The device comprises a loading table, front-end auxiliary vacuum chambers, a main vacuum chamber, a back-end auxiliary vacuum chambers and a unloading table sequentially along the advancing direction of the glass; the device also comprises a glass plate conveying mechanism and an electric control system; the glass plate conveying mechanism is used for conveying glass plates in the processing device; the vacuum chambers are independent from one another and are provided with a vacuum obtaining system and a vacuum detection device respectively, the vacuum degrees of the front-end auxiliary vacuum chambers and the back-end auxiliary vacuum chambers are equal to or lower than the vacuum degree of the main vacuum chamber, and the two auxiliary vacuum chambers provide a transition vacuum space at the front and rear ends of the main vacuum chamber respectively; a plate combining device and a sealing device are arranged in the main vacuum chamber, the two devices can perform plate combining and sealing operations on the glass plates in the main vacuum chamber; and the electric control system is used for performing the system control for a vacuum sealing process and an equipment operation flow.