摘要:
Provided is a synthetic quartz glass substrate for use in a microfluidic device to which bonding by optical contact can be applied in manufacturing a microfluidic device, and which has high adhesion in a bonded interface and does not cause defects such as non-bonding and breakage of the substrate and a defect in which air bubbles are sandwiched at the bonded interface. A synthetic quartz glass substrate for use in a microfluidic device, wherein a maximum value of a cyclic average power spectral density at a spatial frequency of 0.4 mm -1 or more and 100 mm -1 or less is 5.0 × 10 15 nm 4 or less, the maximum value being obtained by measuring any given region of 6.0 mm × 6.0 mm on a surface of the synthetic quartz glass substrate with a white interferometer.
摘要:
A glass composite for use in Extreme Ultra-Violet Lithography (EUVL) is provided. The glass composite includes a first silica-titania glass section. The glass composite further includes a second doped silica-titania glass section mechanically bonded to a surface of the first silica-titania glass section, wherein the second doped silica-titania glass section has a thickness of greater than about 1.0 inch.
摘要:
Certain example embodiments relate to a method of making a coated article and/or glazing (e.g., for automobile, window, and/or other applications). An opaque paint that is not technically a frit is used to form a desired opaque pattern. The paint is screen printed on a substrate. Screen printing parameters are selected, e.g., so that the mesh has a high threads per inch count; the paint is pushed through the screen using hydraulic forces that account for a sheer thinning property of the paint by balancing squeegee speed, squeegee angle relative to the screen, and hardness of the squeegee; and/or relative humidity above and/or near the screen is at least about 80%. Preferably, the paint is substantially fully curable at 400 degrees C. or less. The substrate with the pattern thereon may be bent using a high temperature process, optionally with another substrate to which it may be laminated.
摘要:
A cover glass element can extend to the edges of an electronic device while maintaining the optical flatness and thickness needed for the cover glass. A first glass sheet with the desired thickness and flatness can be thermally bonded to a second glass sheet machined to include an opening to be received by the edges of the electronic device. The resulting three-dimensional cover element forms a uni-body frame that is significantly stiffer than a single sheet of glass, and the larger surface area of the edge provides for enhances pressure distribution, particularly after chemical strengthening, thus enhancing the durability of the electronic device. Further, the thermal bonding process uses lower temperatures than processes such as slumping or pressing, which could potentially affect the flatness and optical clarity of the original sheet glass.
摘要:
Methods of fabricating a glass laminate is provided. According to one embodiment, a glass laminate comprised of a microwave absorbing layer and a microwave transparent layer is formed. The microwave absorbing layer is characterized by a microwave loss tangent δH that is at least a half order of magnitude larger than a loss tangent δL of the microwave transparent layer. An area of the glass laminate is exposed to microwave radiation. The exposed area comprises a cross-laminate hot zone having a cross-laminate hot zone temperature profile. Substantially all microwave absorbing layer portions of the hot zone temperature profile and substantially all microwave transparent layer portions of the hot zone temperature profile reside above the glass transition temperature TG of the various layers of the glass laminate prior to impingement by the microwave radiation. In accordance with another embodiment, a method of fabricating a glass laminate is provided where the exposed area of the glass laminate is characterized by a viscosity below approximately 1×104 poize.
摘要:
The invention relates to an optoelectronic semiconductor element and to a method for the production thereof. Said optoelectronic semiconductor element uses glass components. Said components are welded directly to each other by means of ultrashort laser pulses.
摘要:
Ein Verfahren zum Herstellen eines Formkörpers (10) aus Glas oder Glaskeramik umfasst die Schritte: (a) Auflegen von mindestens zwei Glasrohlingen (12a, 12b) nebeneinander auf eine geformte Oberfläche (14) einer temperaturbeständigen Absenkform (13), (b) Absenken der Glasrohlinge (12a, 12b) auf die geformte Oberfläche (14) durch Erhitzen der Absenkform (13) und der Glasrohlinge (12a, 12b), (c) Befestigen der abgesenkten Glasrohlinge (10a, 10b) aneinander zur Bildung des Formkörpers (10), und (d) Abheben des Formkörpers (10) von der Absenkform (13). Ein Formkörper (10) umfasst mindestens zwei aneinander befestigte, durch Absenken geformte Glasrohlinge (10a, 10b).
摘要:
Glass tesseras specially created for composing ornamental mosaics, characterised by the formal thickness of two flat elements made of industrial glass, which are superimposed and joined through thermic fusion and coloured during the process of fusion (or joining) of the same, with eliminating all risk of the two plates separating or coming unglued, something that could occur in a simple glued sandwich structure and with physical superficial effects of brilliance and/or refractivity, giving a visual effect of depth that cannot be found in products using the preceding technique.