Abstract:
The present invention addresses to a process for producing olefins and esters in the C10 to C13 range from fatty acid esters through a catalytic hydrogenation reaction followed by cross-metathesis of the hydrogenated product with light olefins.
Abstract:
Effect separation of a composition of matter that includes at least two seed or plant oil derivatives into at least one desired product stream using at least two separation operations, which are independently selected from among several potential separation operations, in conjunction with at least one recycle stream from a separation operation.
Abstract:
This invention relates to a process for the aromatization of C6 to C12 alkanes, such as hexane, heptane and octane, to aromatics, such as benzene, ethyl benzene, toluene and xylenes, with a germanium-containing zeolite catalyst. The catalyst is a non-acidic aluminum-silicon-germanium zeolite on which a noble metal, such as platinum, has been deposited. The zeolite structure may be of MFI, BEA, MOR, LTL or MTT. The zeolite is made non-acidic by being base-exchanged with an alkali metal or alkaline earth metal, such as cesium, potassium, sodium, rubidium, barium, calcium, magnesium and mixtures thereof, to reduce acidity. The catalyst is sulfur tolerant and may be pretreated with a sulfur compound, i.e., sulfided. The hydrocarbon feed may contain sulfur up to 1000 ppm. The present invention could be applicable to a feedstream which is predominantly parafflnic and/or low in naphthenes. Lowering the hydrogen to hydrocarbon ratio increases conversion and aromatics selectivity.
Abstract:
Improved processes are provided for the production of alkyl aromatic compounds using zeolite catalyst/s) and for periodic reactivation in situ of zeolite catalyst(s) that have at least in part become deactivated. Processes according to this invention are typically carried out in a reaction section loaded with catalyst(s) wherein a desired alkyl aromatic compound is produced from feed aromatic and olefin compounds followed by a separation section in which the desired product is isolated and recovered. Alkylation, transalkylation, and/or isomerization reactions that occur in the reaction section are carried out in liquid phase or partial liquid phase over the said zeolite catalyst(s). At least a portion of the zeolite catalyst(s) employed in the reaction section is (are) reactivated in situ, periodically or when deemed necessary, by contacting the deactivated catalyst(s), at elevated temperature and in the substantial absence of olefin feedstock, with an aromatic stripping stream comprising the feed aromatic compound, the desired alkyl aromatic product, byproducts formed in the process, or mixtures thereof, to restore its (their) activity.
Abstract:
Improved catalysts useful in a number of organic synthesis reactions such as olefin metathesis and atom or group transfer reactions are made by bringing into contact a multi-coordinated metal complex comprising a multidentate Schiff base ligand, and one or more other ligands, with an acid under conditions such that said acid is able to at least partly cleave a bond between the metal and the multidentate Schiff base ligand of said metal complex, optionally through intermediate protonation of said Schiff base ligand.
Abstract:
The invention relates to novel methods for affecting, controlling and/or directing various reactions and/or reaction pathways or systems by exposing one or more components in a holoreaction system to at least one spectral energy pattern. In a first aspect of the invention, at least one spectral energy pattern can be applied to a reaction system. In a second aspect of the invention, at least one spectral energy conditioning pattern can be applied to a conditioning reaction system. The spectral energy conditioning pattern can, for example, be applied at a separate location from the reaction vessel (e.g., in a conditioning reaction vessel) or can be applied in (or to) the reaction vessel, but prior to other reaction system participants being introduced into the reaction vessel.
Abstract:
A process for preparing hydrocarbons in the lube base oil range, lube base oils and lube oil compositions from a fraction with an average molecular weight above a target molecular weight and a fraction with an average molecular weight below a target molecular weight via molecular averaging is described. The fractions can be obtained, for example, from Fischer-Tropsch reactions, and/or obtained from the distillation of crude oil. Molecular averaging converts the fractions to a product with a desired molecular weight, for use in preparing a lube oil composition. The product can optionally be isomerized to lower the pour point, and also can be blended with suitable additives for use as a lube oil composition.