Abstract:
A process and apparatus are disclosed for the generation of hydrogen from hydrogen rich compounds. The process uses hydrogen peroxide as an oxidizer with a hydrogen rich compound forming a mixture such that when the mixture is exposed to a catalyst forming a hydrogen rich gas.
Abstract:
The invention relates to novel methods for affecting, controlling and/or directing various reactions and/or reaction pathways or systems by exposing one or more components in a holoreaction system to at least one spectral energy pattern. In a first aspect of the invention, at least one spectral energy pattern can be applied to a reaction system. In a second aspect of the invention, at least one spectral energy conditioning pattern can be applied to a conditioning reaction system. The spectral energy conditioning pattern can, for example, be applied at a separate location from the reaction vessel (e.g., in a conditioning reaction vessel) or can be applied in (or to) the reaction vessel, but prior to other reaction system participants being introduced into the reaction vessel.
Abstract:
A device for catalytically dissolving H2O2 in an aqueous solution constituting an agent for the care of contact lenses, in which the catalyst is formed by a moulding roughened by sandblasting and coated with a platinum layer (1) produced by sputtering.
Abstract:
A method of generating oxygen for emergency use, wherein a mixture of solid matters prepared by binding a catalyst such as the powder of manganese dioxide with a water-soluble binding agent such as a gum arabic solution and an addition compound of sodium carbonate and hydrogen peroxide is intermixed with water, so that the solid matters are dissolved allowing the catalyst to gradually come into contact with a solution of hydrogen peroxide resulting from the decomposition of the addition compound of sodium carbonate and hydrogen peroxide, thereby generating oxygen gradually and continuously for an extended period of time.
Abstract:
The present invention is directed to the use of an ionic liquid as a dispersant or solvent and as a heat sink in a composition for generating oxygen, the composition further comprising at least one oxygen source formulation, and at least one metal oxide compound formulation, wherein the oxygen source formulation comprises a peroxide compound, the ionic liquid is in the liquid state at least in a temperature range from -10°C to +50°C, and the metal oxide compound formulation comprises a metal oxide compound which is an oxide of one single metal or of two or more different metals, said metal(s) being selected from the metals of groups 2 to 14 of the periodic table of the elements.
Abstract:
Verfahren zur katalytischen Spontanzersetzung von Wasserstoffperoxid unter Verwendung eines Feststoffkatalysators, dadurch gekennzeichnet, dass der Feststoffkatalysator unter Verwendung mindestens eines exotherm zersetzbaren Platinvorläufers hergestellt worden ist.
Abstract:
A catalyst for decomposing high-concentration hydrogen peroxide comprises an active layer on a carrier comprising gamma-phase alumina. The carrier can also comprise aluminium, with the gamma-phase alumina forming a passivating layer on the surface of the aluminium. The active layer can comprise platinum. Apparatus for decomposing hydrogen peroxide can include the catalyst in a decomposition chamber arranged to receive hydrogen peroxide. The apparatus can be used as a thruster, comprising a nozzle arranged to generate thrust by directing exhaust gases in a specific direction. For example, the thruster can be a monopropellant, bipropellant, or hybrid thruster. In other embodiments, the apparatus can be used as a gas generator or a fuel cell.
Abstract:
There is provided on-demand, oxygen generating topical compositions having a built-in indicator specifically to indicate a color change upon the complete mixing of the oxygen precursor and catalyst. The first part of the composition contains a carrier and manganese dioxide (MnO2) nanoparticles. The second part of the composition comprises the oxygen precursor; hydrogen peroxide. When the two parts, one with manganese dioxide nanoparticles and exhibiting a characteristic color, (e.g. yellow brown) and the second part with hydrogen peroxide are mixed together, the color imparted by the manganese dioxide nanoparticles essentially disappears and the final composition (enriched with oxygen) either appears colorless or takes on the original color of the catalyst. Thus, the manganese dioxide catalyst nanoparticles themselves serve as the colorimetric indicator of peroxide decomposition to oxygen, precluding the need for an external colorant. Manganese dioxide particles that are not nanoparticles fail to exhibit this color changing phenomenon.