摘要:
A novel heterocyclic compound or a salt thereof useful for selectively inhibiting the degradation of p27 kip1 is provided. The compound or the salt thereof is represented by the following formula (1): wherein A represents an alkyl group, a cycloalkyl group, an aryl group or a heterocyclic group, the group A may have a substituent; the ring B represents a 5- to 8-membered monocyclic heterocyclic ring or a condensed ring containing the monocyclic heterocyclic ring, the ring B may have a substituent; the ring C represents an aromatic ring, the ring C may have a substituent; L represents a linker comprising a main chain having 3 to 5 atoms selected from the group consisting of a carbon atom, a nitrogen atom, an oxygen atom and a sulfur atom, wherein at least one atom in the main chain is a hetero atom selected from the group consisting of a nitrogen atom, an oxygen atom and a sulfur atom, the linker L may have a substituent; and n is 0 or 1.
摘要:
This invention relates to new inhibitors of butyrylcholinesterase with general formulas I and II, where substituents are described in patent description. Compounds can be in the form of pure enantiomers or as racemic mixtures, or in the form of pharmaceutically acceptable salts. The present invention relates to the use of these inhibitors for the treatment of Alzheimer's disease and other forms of dementia.
摘要:
The present invention relates to the preparation of a 2-aminothiazole derivative having a structure as formula (I) and a therapeutic effect thereof for Alzheimer's disease (AD), and a therapeutic effect thereof against transplant rejection, autoimmune diseases, ischemia-reperfusion injury, chronic inflammation response, endotoxemia, and other diseases.
摘要:
The present invention provides new organic compounds of the following formula: €ƒ€ƒ€ƒ€ƒ€ƒ€ƒ€ƒ€ƒA-L1-B-C-D-L2-E wherein A, L1, B, C, D, L2 and E are as defined in the description of the invention, that are useful for treating or preventing conditions or disorders associated with DGAT1 activity, particularly type 2 diabetes, and pharmaceutical compositions comprising such compounds.
摘要:
The invention provides methods of preparing macrocycles including macrocycle stabilized peptides (MSPs). Macrocycles and MSPs are prepared according to nucleophilic capture of an iminoquinomethide type intermediate generated from a suitably substituted 2-amino-thiazol-5-yl carbinol. The preferred nucleophile may be selected from an electron rich aromatic moiety in the case of macrocycles and, in the case of MSPs, at least one amino acid comprises an electron rich aromatic moiety. In addition, the concept can be extended to other related 5-membered heterocyclic systems in place of the thiazole, such as imidazole or oxazole. The conditions for the generation of the corresponding iminoquinomethide type intermediates may be similar or different than the conditions used for the 2-amino-thiazol-5-yl carbinol.
摘要:
A novel heterocyclic compound or a salt thereof useful for selectively inhibiting the degradation of p27 kip1 is provided. The compound or the salt thereof is represented by the following formula (1):
wherein A represents an alkyl group, a cycloalkyl group, an aryl group or a heterocyclic group, the group A may have a substituent; the ring B represents a 5- to 8-membered monocyclic heterocyclic ring or a condensed ring containing the monocyclic heterocyclic ring, the ring B may have a substituent; the ring C represents an aromatic ring, the ring C may have a substituent; L represents a linker comprising a main chain having 3 to 5 atoms selected from the group consisting of a carbon atom, a nitrogen atom, an oxygen atom and a sulfur atom, wherein at least one atom in the main chain is a hetero atom selected from the group consisting of a nitrogen atom, an oxygen atom and a sulfur atom, the linker L may have a substituent; and n is 0 or 1.
摘要:
The present invention provides organic compounds of the following structure; A-L1-B-C-D-L2-E that are useful for treating or preventing conditions or disorders associated with DGAT1 activity in animals, particularly humans.