Abstract:
Enhancements to hardware architectures (e.g., a RISC processor or a DSP processor) to accelerate spectral band replication (SBR) processing are described. In some embodiments, instruction extensions configure a reconfigurable processor to accelerate SBR and other audio processing. In addition to the instruction extensions, execution units (e.g., multiplication and accumulation units (MACs)) may operate in parallel to reduce the number of audio processing cycles. Performance may be further enhanced through the use of source and destination units which are configured to work with the execution units and quickly fetch and store source and destination operands.
Abstract:
Enhancements to hardware architectures (e.g., a RISC processor or a DSP processor) to accelerate spectral band replication (SBR) processing are described. In some embodiments, instruction extensions configure a reconfigurable processor to accelerate SBR and other audio processing. In addition to the instruction extensions, execution units (e.g., multiplication and accumulation units (MACs)) may operate in parallel to reduce the number of audio processing cycles. Performance may be further enhanced through the use of source and destination units which are configured to work with the execution units and quickly fetch and store source and destination operands.
Abstract:
Described herein are systems, methods and apparatus for decoding in-band on-channel signals and extracting audio and data signals. Memory requirements are reduced by selectively filtering a bit stream of data in the signal so that services of interest which are encoded therein are processed. A single pool of memory may be shared between physical layer and data link layer processing. Memory in this pool may be allocated dynamically between processing of data at the physical and data link layers. When the available memory is not sufficient to support the required services, the dynamic allocation allows for graceful degradation.
Abstract:
Enhancements to hardware architectures (e.g., a RISC processor or a DSP processor) to accelerate spectral band replication (SBR) processing are described. In some embodiments, instruction extensions configure a reconfigurable processor to accelerate SBR and other audio processing. In addition to the instruction extensions, execution units (e.g., multiplication and accumulation units (MACs)) may operate in parallel to reduce the number of audio processing cycles. Performance may be further enhanced through the use of source and destination units which are configured to work with the execution units and quickly fetch and store source and destination operands.
Abstract:
Enhancements to hardware architectures (e.g., a RISC processor or a DSP processor) to accelerate spectral band replication (SBR) processing are described. In some embodiments, instruction extensions configure a reconfigurable processor to accelerat SBR and other audio processing. In addition to the instruction extensions, execution units (e.g., multiplication and accumulation units (MACs)) may operate in parallel to reduce the number of audio processing cycles. Performance may be further enhanced through the use of source and destination units which are configured to work with the execution units and quickly fetch and store source and destination operands.
Abstract:
Enhancements to hardware architectures (e.g., a RISC processor or a DSP processor) to accelerate spectral band replication (SBR) processing are described. In some embodiments, instruction extensions configure a reconfigurable processor to accelerat SBR and other audio processing. In addition to the instruction extensions, execution units (e.g., multiplication and accumulation units (MACs)) may operate in parallel to reduce the number of audio processing cycles. Performance may be further enhanced through the use of source and destination units which are configured to work with the execution units and quickly fetch and store source and destination operands.