Abstract:
An erasures assisted block code decoder and related method are provided. The erasures assisted block code decoder includes a first block decoder, an erasures processor, and a second block code decoder. The first block decoder, for example, a Reed-Solomon decoder, is configured to decode blocks of data elements, e.g., bytes, that were previously affected by bursty errors. The first block decoder is also configured to identify those of such blocks it is unable to decode. The erasures processor is configured to identify, as erasures, data elements in the un-decodable blocks by utilizing, in the erasures identification process, data elements in the decoded blocks that were corrected by the first block decoder. The second block decoder, e.g., the same or different Reed-Solomon decoder, is configured to decode one or more of the un-decodable blocks by utilizing, in the decoding, the erasures identified by the erasures processor.
Abstract:
Disclosed are UE-feedback techniques to support the adaptive DMRS transmission. A UE and eNB support adaptive DMRS transmission in which an eNB adjusts (i.e., selects) a DMRS pattern based on information describing channel conditions perceived by the UE. The UE may explicitly provide the channel conditions, or implicitly provide them by selecting a desired DMRS pattern.
Abstract:
Various embodiments are directed towards suppressing inter-cell and intra-cell interference. In some embodiments, an intra-cell interference signal for a specified rake finger is received. An inter-cell interference signal is received. The intra-cell interference signals upstream of a chip-level equalizer are suppressed. The inter-cell interference signals upstream of the chip-level equalizer are suppressed.
Abstract:
In one embodiment, interference suppression is improved by improving convergence criteria. For some embodiments, convergence is improved by employing non-constant alpha-beta-weighting. For other embodiments, convergence is improved by employing successive interference suppression methods that have guaranteed convergence properties.
Abstract:
In one embodiment, intra-cell interference suppression is achieved upstream of a chip-level equalizer, thereby mitigating downstream processing resources.
Abstract:
Various embodiments are disclosed for providing timing tracking loops in a communication system. A communication system includes a delay locked loop (DLL) comprising a maximum region detector configured to identify a target channel profile comprising at least a portion of the multipath signals based on the timing information, the maximum region detector further configured to apply a weight vector to each channel tap in the target channel profile and determine a tap with a maximum power level relative to remaining channel taps in the channel profile. The system further comprises a window timing loop (WTL) adjuster configured to track a position of a channel estimation window (CEW) within an observation window corresponding to the maximum channel energy level, where the maximum channel energy level corresponds to the sum of the energy of all the taps for a given window.
Abstract:
An erasures assisted block code decoder and related method are provided. The erasures assisted block code decoder comprises a first block decoder, an erasures processor, and a second block code decoder. The first block decoder, for example, a Reed-Solomon decoder, is configured to decode blocks of data elements, e.g., bytes, that were previously affected by bursty errors. The first block decoder is also configured to identify those of such blocks it is unable to decode. The erasures processor is configured to identify, as erasures, data elements in the un-decodable blocks by utilizing, in the erasures identification process, data elements in the decoded blocks that were corrected by the first block decoder. The second block decoder, e.g., the same or different Reed-Solomon decoder, is configured to decode one or more of the un-decodable blocks by utilizing, in the decoding, the erasures identified by the erasures processor.
Abstract:
In one embodiment, interference suppression is improved by improving convergence criteria. For some embodiments, convergence is improved by employing non-constant alpha-beta-weighting. For other embodiments, convergence is improved by employing successive interference suppression methods that have guaranteed convergence properties.
Abstract:
An erasures assisted block code decoder and related method are provided. The erasures assisted block code decoder includes a first block decoder, an erasures processor, and a second block code decoder. The first block decoder, for example, a Reed-Solomon decoder, is configured to decode blocks of data elements, e.g., bytes, that were previously affected by bursty errors. The first block decoder is also configured to identify those of such blocks it is unable to decode. The erasures processor is configured to identify, as erasures, data elements in the un-decodable blocks by utilizing, in the erasures identification process, data elements in the decoded blocks that were corrected by the first block decoder. The second block decoder, e.g., the same or different Reed-Solomon decoder, is configured to decode one or more of the un-decodable blocks by utilizing, in the decoding, the erasures identified by the erasures processor.
Abstract:
Various embodiments are disclosed for providing timing tracking loops in a communication system. A communication system includes a delay locked loop (DLL) comprising a maximum region detector configured to identify a target channel profile comprising at least a portion of the multipath signals based on the timing information, the maximum region detector further configured to apply a weight vector to each channel tap in the target channel profile and determine a tap with a maximum power level relative to remaining channel taps in the channel profile. The system further comprises a window timing loop (WTL) adjuster configured to track a position of a channel estimation window (CEW) within an observation window corresponding to the maximum channel energy level, where the maximum channel energy level corresponds to the sum of the energy of all the taps for a given window.