Abstract:
A domain controller hierarchy in accordance with implementations of the present invention involves one or more local domain controllers, such as one or more read-only local domain controllers in communication with one or more writable hub domain controllers. The local domain controllers include a resource manager, such as a Security Account Manager (“SAM”), that manages resources and/or other accounts information received from the writable hub domain controller. When a local user attempts to change the resource at the local domain controller, however, the resource manager chains the request, along with any appropriate identifiers for the request, to the writable hub domain controller, where the request is processed. If appropriate, the hub domain controller sends a response that the resource has been updated as requested and also sends a copy of the updated resource to be cached at the local domain controller,
Abstract:
A domain controller hierarchy in accordance with implementations of the present invention involves one or more local domain controllers, such as one or more read-only local domain controllers in communication with one or more writable hub domain controllers. The local domain controllers include a resource manager, such as a Security Account Manager (“SAM”), that manages resources and/or other accounts information received from the writable hub domain controller. When a local user attempts to change the resource at the local domain controller, however, the resource manager chains the request, along with any appropriate identifiers for the request, to the writable hub domain controller, where the request is processed. If appropriate, the hub domain controller sends a response that the resource has been updated as requested and also sends a copy of the updated resource to be cached at the local domain controller.
Abstract:
A stereoscopic display comprising a concave mirror that acts as a directional screen, a projection system including a plurality of reflecting surfaces for directing first and second images onto focusing means, and a beam splitter between the mirror and the focusing means for directing light from the focusing means towards the mirror whilst allowing light reflected from the mirror to be transmitted therethrough. In a preferred embodiment, the focusing means comprise a single lens for focusing both of the first and second images toward the concave mirror. Ideally, a tracking system is employed to detect movement of a user's head and/or eyes and move the concave mirror so that it tracks any such detected movement.
Abstract:
A service Provider tests and validates the ability of a customer to carry out its part of the service process, to specify parameters of the process and/or to use the output of the process supplied to it by supplying to the Consumer a set of first validation data that is processed by the Consumer to produce a second set of validation data that is compared with a set of criteria and a process specification to determine if the Consumer has successfully processed the first set of validation data.
Abstract:
In a wireless communication system (106), base stations (118, 120) are connected to a backbone network (116) such as a wired LAN and act as access points and relays for remote stations (128, 132, 136). A remote station registers and performs bidirectional communication with one of the base stations designated as its home base station. Base stations have overlapping coverage areas where a remote station is within reception range of several base stations. Such communication system may for instance be a multicell radioLAN using frequency hopping signaling. The method allows reuse of a limited number of network resources such as frequency hopping patterns and assign the same resource to several active base stations. Upon request from a base station, a network controller (110) connected to the backbone network computes a distance index between the requesting base station and the other active base stations and assigns to the requesting base station the same network resource as the one assigned to another base station with the highest distance index. Information about cells overlaps is centralized in a control database (109) and used by the network controller to compute distance indexes.
Abstract:
A domain controller hierarchy in accordance with implementations of the present invention involves one or more local domain controllers, such as one or more read-only local domain controllers in communication with one or more writable hub domain controllers. The local domain controllers include a resource manager, such as a Security Account Manager (“SAM”), that manages resources and/or other accounts information received from the writable hub domain controller. When a local user attempts to change the resource at the local domain controller, however, the resource manager chains the request, along with any appropriate identifiers for the request, to the writable hub domain controller, where the request is processed. If appropriate, the hub domain controller sends a response that the resource has been updated as requested and also sends a copy of the updated resource to be cached at the local domain controller.
Abstract:
A domain controller hierarchy in accordance with implementations of the present invention involves one or more local domain controllers, such as one or more read-only local domain controllers in communication with one or more writable hub domain controllers. The local domain controllers include a resource manager, such as a Security Account Manager (“SAM”), that manages resources and/or other accounts information received from the writable hub domain controller. When a local user attempts to change the resource at the local domain controller, however, the resource manager chains the request, along with any appropriate identifiers for the request, to the writable hub domain controller, where the request is processed. If appropriate, the hub domain controller sends a response that the resource has been updated as requested and also sends a copy of the updated resource to be cached at the local domain controller.
Abstract:
Apparatus for producing liquid or solid xenon comprises a duct 12 having an inlet 14 for receiving gaseous xenon and an outlet 16 for outputting gaseous xenon at a reduced temperature to a nozzle located in a vacuum chamber 60. A housing 18 extends about the duct and contains a halocarbon coolant in thermal contact with the duct, and a second duct 24 in thermal contact with the halocarbon coolant for conveying a flow of liquid nitrogen through the housing 18 to control the temperature of the halocarbon. In view of the difference in the pressure of the xenon gas output from the duct and the pressure in the chamber, the thus-cooled gas is caused to liquefy or solidify in the vicinity of the nozzle.
Abstract:
In a wireless communication system (106), base stations (118, 120) are connected to a backbone network (116) such as a wired LAN and act as access points and relays for remote stations (128, 132, 136). A remote station registers and performs bidirectional communication with one of the base stations designated as its home base station. Base stations have overlapping coverage areas where a remote station is within reception range of several base stations. Such communication system may for instance be a multicell radio LAN using frequency hopping signaling. The method allows to reuse a limited number of network resources such as frequency hopping patterns and assign the same resource to several active base stations. Upon request from a base station, a network controller (110) connected to the backbone network computes a distance index between the requesting base station and the other active base stations and assigns to the requesting base station the same network resource as the one assigned to another base station with the highest distance index. Information about cells overlaps is centralized in a control database (109) and used by the network controller to compute distance indexes.
Abstract:
The invention relates to a vehicle air suspension system and an air suspension unit (10) therefor. The air suspension system comprises a plurality of suspension elements, wherein each element includes at least one air suspension unit (10). The air suspension unit (10) consists of an integrated assembly mountable between the chassis and the axle of a vehicle, and includes: an air spring (14); a height sensor (33) for providing a tide height signal; a valve (32); and an electronic controller (36). The electronic controller (36) controls the valve (32) to adjust a volume of air in the air spring (14) in response to the ride height signal from the height sensor (33).