Abstract:
Methods and apparati for screening compounds for agricultural activity has now been developed which employ e.g., intact plants grown in microtiter plates on very small amounts of plant growth media containing a test compound. In comparison to the standard greenhouse screen, the microscreen requires vastly less space, labor, and test compound. However, unlike in vitro screens, responses of intact plants are assayed. Using the microscreen, high-throughput screening of test compounds can be accomplished using whole plant responses as the assay.
Abstract:
A multiple dosage feeder for a cage is provided. The multiple dosage feeder includes a frame having a cage-interior side, a food holding member rotatably mounted on the frame, and a food presentation member disposed on the cage-interior side of the frame. The food holding member holds a plurality of measured dosages of food or other substances, and at least a portion of the food holding member extends to the cage-interior side of the frame. The food presentation member permits access to a single dosage of the plurality of dosages by an animal within the cage. At least a portion of the food holding member is rotatable within the food presentation member so as to expose the single dosage of the plurality of dosages, while the food presentation member prevents access to any remaining dosages on the cage-interior side of the frame.
Abstract:
In a wireless communication system (106), base stations (118, 120) are connected to a backbone network (116) such as a wired LAN and act as access points and relays for remote stations (128, 132, 136). A remote station registers and performs bidirectional communication with one of the base stations designated as its home base station. Base stations have overlapping coverage areas where a remote station is within reception range of several base stations. Such communication system may for instance be a multicell radioLAN using frequency hopping signaling. The method allows reuse of a limited number of network resources such as frequency hopping patterns and assign the same resource to several active base stations. Upon request from a base station, a network controller (110) connected to the backbone network computes a distance index between the requesting base station and the other active base stations and assigns to the requesting base station the same network resource as the one assigned to another base station with the highest distance index. Information about cells overlaps is centralized in a control database (109) and used by the network controller to compute distance indexes.
Abstract:
A system and method is disclosed for selecting certain subgroups of radio frequency (RF) tags for querying, communicating, and/or identifying by a base station. The base station sends commands to a group tags within a RF field of the base station. The tags use control logic to determine whether or not they meet certain criteria sent out by the commands. This may cause the tags to change state which either prevents or allows a given tag to participate in an identification process. In this way, a given subgroups of tags meeting certain criteria can be selected for querying, communicating, and/or identifying.
Abstract:
A repeater that has a receiver for receiving a signal. A validation module determines whether a signature is present in the received signal. An invalidation module determines whether undesired signal components are present in the received signal. The received signal is transmitted if the signature is present and if the undesired signal components are not present.
Abstract:
A method of dynamically allocating bandwidth of channels to cells in a communications cellular network according to user demand. Groups of cells are formed so as to minimize interference within each group, and a particular channel is assigned to each of the groups. The bandwidth of each channel then is dynamically allocated by time division to each of the cells in the assigned group according to user demand in each of the cells thereof.
Abstract:
This invention provides a tag identification system and method for identifying tags in the range of a reader station where the tags are divided into smaller groups, where the tags are identified one group at a time so as to save power by powering off the tags that are not in the group currently being identified. Each tag puts itself in a group by performing calculations from parameters stored in itself and from parameters received from the reader station. In another variation of this invention, only tags which configure themselves to be activated at a final frequency are identified. The set of tags which configure themselves to be activated at the final frequency changes with each identification round until all tags in the range of the reader have been identified.
Abstract:
A method of routing packets through a fixed source routing communications network from and to mobile units. With this invention an initial access point is determined when a communications session is established to or from a mobile unit through the network. Location information is updated each time the mobile unit moves out of the range of one access point and into the range of another access point of the network. When packets for the session are to be transmitted to the mobile unit from the wired network, the packets are forwarded from the initial access point to a current access point, which by definition is in the range of the mobile unit. When packets for the session are to be transmitted from the mobile unit and to the wired network, the access point intercepts these packets and routes them to their destination and/or initiates route discovery to those destinations. When packets are to be transmitted between mobiles at different access points. The packets are sent between the current access points and not through the home access points.
Abstract:
In a wireless communication system (106), base stations (118, 120) are connected to a backbone network (116) such as a wired LAN and act as access points and relays for remote stations (128, 132, 136). A remote station registers and performs bidirectional communication with one of the base stations designated as its home base station. Base stations have overlapping coverage areas where a remote station is within reception range of several base stations. Such communication system may for instance be a multicell radio LAN using frequency hopping signaling. The method allows to reuse a limited number of network resources such as frequency hopping patterns and assign the same resource to several active base stations. Upon request from a base station, a network controller (110) connected to the backbone network computes a distance index between the requesting base station and the other active base stations and assigns to the requesting base station the same network resource as the one assigned to another base station with the highest distance index. Information about cells overlaps is centralized in a control database (109) and used by the network controller to compute distance indexes.
Abstract:
A method of controlling packet traffic in an IP network of originating, receiving and intermediate nodes to meet performance objectives established by service level agreements. Traffic statistics and performance data such as delay and loss rates relating to traffic flows are collected at intermediate nodes. A control server processes the collected data to determines data flow rates for different priorities of traffic. A static directory node is used to look up inter-node connections and determine initial traffic classes corresponding to those connections. The rates are combined with the initial traffic classes to define codes for encoding the headers of packets to determine their network priority.