Abstract:
There is disclosed bagging apparatus (20) for bagging a pre-form (12) for a composite component on a tool (10), the apparatus (20) comprising: a bag dispenser (22) having a store (28) for a tubular vacuum bag (30); and a bag guide (36). In use, a length of tubular vacuum bag material (30) can be drawn from the store (28) radially outwardly over the bag guide (36) and over the tool (10) to form a tube around the pre-form. There is also disclosed a method of bagging a pre-form (12) for a composite component on a tool using the bagging apparatus (20).
Abstract:
There is disclosed a lay-up head for applying elongate fiber reinforcement material to an application surface. The lay-up head comprises a guide eyelet through which elongate fiber reinforcement material is arranged to pass into the lay-up head. The guide eyelet has an eyelet rim forming a discontinuous contact surface over which elongate fiber reinforcement material is arranged to pass.
Abstract:
There is disclosed composite material lay-up equipment for applying a plurality of individual lengths of elongate fiber reinforcement material to an article, the equipment comprising: a support head; a cutting mechanism carried by the support head for severing a plurality of individual lengths of elongate fiber reinforcement material. The cutting mechanism comprises a plurality of cutting elements coupled to and moveable with respect to the support head and a cassette removably attached to the support head and having a plurality of corresponding counteracting elements statically mounted thereto. Each cutting element is displaceable relative to the corresponding counteracting element to perform a cutting stroke in which the respective cutting and counteracting elements cooperate to sever a length of elongate fiber reinforcement material extending through the nip formed between them.
Abstract:
An aerofoil structure (26) for a gas turbine engine (10), the aerofoil structure comprising a carbon composite aerofoil portion (38) and a tip portion (48), wherein the tip portion comprises a tip surface (60) configured to face a corresponding casing structure (30), the tip portion further comprising a ridge line (62) extending along at least a portion of the tip surface, wherein the tip surface comprises a first surface (64) and a second surface (66) provided either side of the ridge line, the ridge line being defined by the intersection of the first and second surfaces, wherein the ridge line is configured to cut into the casing structure during an interaction between the aerofoil structure and casing structure.
Abstract:
There is disclosed a cutting mechanism for severing elongate fibre reinforcement material in composite material lay-up equipment, the cutting mechanism comprising a cutting element and a counteracting element which cooperate to sever fibre reinforcement material extending through the nip between them, the cutting element being mounted on an elongate arm which is pivotable about a pivot axis A spaced from the nip, to displace the cutting element relatively to the counteracting element to perform a cutting stroke, the mechanism further comprising guide means arranged to guide the fibre reinforcement material through the nip in a feed direction transverse to the pivot axis A, and an actuation device for driving the elongate arm in a cutting stroke, the actuation device acting on the elongate arm at a position away from the cutting element. There is also provided composite material lay-up equipment comprising the cutting mechanism.
Abstract:
There is disclosed composite material lay-up equipment for applying a plurality of individual lengths of elongate fibre reinforcement material to an article, the equipment comprising: a support head; a cutting mechanism carried by the support head for severing a plurality of individual lengths of elongate fibre reinforcement material. The cutting mechanism comprises a plurality of cutting elements coupled to and moveable with respect to the support head and a cassette removably attached to the support head and having a plurality of corresponding counteracting elements statically mounted thereto. Each cutting element is displaceable relative to the corresponding counteracting element to perform a cutting stroke in which the respective cutting and counteracting elements cooperate to sever a length of elongate fibre reinforcement material extending through the nip formed between them.
Abstract:
There is disclosed a cutting mechanism for severing elongate fiber reinforcement material in composite material lay-up equipment, the cutting mechanism comprising a cutting element and a counteracting element which cooperate to sever fiber reinforcement material extending through the nip between them, the cutting element being mounted on an elongate arm which is pivotable about a pivot axis A spaced from the nip, to displace the cutting element relatively to the counteracting element to perform a cutting stroke, the mechanism further comprising guide means arranged to guide the fiber reinforcement material through the nip in a feed direction transverse to the pivot axis A, and an actuation device for driving the elongate arm in a cutting stroke, the actuation device acting on the elongate arm at a position away from the cutting element. There is also provided composite material lay-up equipment comprising the cutting mechanism.
Abstract:
There is disclosed a method of forming a composite component having a curved body and an integral flange from a pre-form (200) using forming apparatus comprising: a tool (102) comprising a curved body portion (104) having a lay-up surface (110) and a forming assembly (105) comprising a plurality of forming elements (106) each having a lay-up surface (120) and a primary flange-forming surface (122); and a plurality of filler elements (107) each having a secondary flange-forming surface (156). The method comprises: providing a pre-form (200) over the lay-up surfaces (110, 120) of the curved body portion 104 and the forming elements (106) of the tool (102) in a layup configuration of the forming assembly (105); moving the forming elements (106) radially outwardly from the layup configuration to respective forming positions so that the forming elements (106) are circumferentially spaced apart from one another to form gaps therebetween; moving the filler elements (107) radially outwardly to respective forming positions in the circumferential gaps between the forming elements (106) so that the primary and secondary flange-forming surfaces (122, 156) form a substantially continuous flange-forming surface in a forming configuration of the forming assembly (105). Movement of the forming assembly (105) from the layup configuration to the forming configuration causes a region of the pre-form (200) to deform between the continuous flange-forming surface and a counteracting forming surface to form the integral flange of the component.
Abstract:
There is disclosed a method of manufacturing a composite component comprising a main body and an integral flange, the method comprising: applying fibre reinforcement material on a tool having a main body portion and a flange-forming portion to provide a pre-form having first, second and third contiguous regions, the first region corresponding to the main body of the component and the second region corresponding to the integral flange of the component; and causing relative movement between the flange-forming portion and the main body portion so that the second region of the pre-form deforms to form the flange; wherein the relative movement of the flange-forming portion and the main body portion causes sliding movement between the second and third regions of the pre-form and the flange-forming, thereby producing a tension force in at least the second region of the pre-form during forming of the flange.
Abstract:
There is disclosed composite material lay-up equipment 10 for applying a plurality of individual lengths of elongate fiber reinforcement material 14 to an article 12, the equipment 10 comprising: a support head 20; a cutting mechanism 22 carried by the support head 20 for severing a plurality of individual lengths of elongate fiber reinforcement material 14. The cutting mechanism 22 comprises a plurality of cutting elements 60 coupled to and moveable with respect to the support head 20 and a cassette 65 removably attached to the support head 20 and having a plurality of corresponding counteracting elements 76 statically mounted thereto. Each cutting element 60 is displaceable relative to the corresponding counteracting element 76 to perform a cutting stroke in which the respective cutting and counteracting elements 60, 76 cooperate to sever a length of elongate fiber reinforcement 14 material extending through the nip formed between them.