Abstract:
In a radio frequency identification (RFID) security reader, by integrating an encryption module that encrypts transmission data and a decryption module that decrypts reception data from an RFID security tag to restore the reception data to original data to a modem, an input/output time period of a processor module that processes a communication protocol in an RFID security system is minimized.
Abstract:
A Radio Frequency Identification (RFID) tag and an interrogator that support a normal mode and a secure mode, and operating methods thereof are provided. The RFID tag may notify the interrogator of whether a current operating mode of the RFID tag is the normal mode or the secure mode, may perform different inventory processes based on the current operating mode, and may perform an authentication of the interrogator. Here, the RFID tag and the interrogator may also perform a mutual authentication.
Abstract:
Provided are a Radio Frequency Identification (RFID) tag and apparatus and method for locating a RFID tag without comparing arrival times of blink signals transmitted from the RFID tag in order to quickly trace a location of the RFID tag. The RFID tag includes a tag ID generator configured to generate a tag ID of the RFID tag, a blink generator configured to generate a plurality of sub-blink signals that form the blink signal, a sub-blink ID generator configured to generate sub-blink IDs for the generated sub-blink signals, a sub-blink ID inserter configured to insert the generated sub-blink IDs into the sub-blink signals, and a transmitter configured to transmit the blink signal having the tag ID and the sub-blink IDs.
Abstract:
Disclosed is a wireless signal receiving apparatus, and more particularly, disclosed is a parallel automatic frequency offset estimation apparatus and method for tracking a frequency offset in an early stage by calculating, in parallel, frequency offsets of a received signal. The parallel automatic frequency offset estimation apparatus includes a receiving unit to receive a data frame; and a frequency offset estimation unit to calculate, in parallel, frequency and phase deviations at different bit intervals within a particular section of the received data frame, to add together the frequency and phase deviations to obtain a first sum of the frequency and phase deviations, and to add the first sum to a frequency phase deviation calculated for each bit after the particular section in the received data frame to obtain a second sum of the frequency and phase deviations. Accordingly, transmission frequency tracking can be performed at higher speed, compared to the conventional systems in which frequency offset acquisition is carried out in stages. Also, accurate tracking of a transmission frequency is possible in an initial frame.
Abstract:
A positioning system is provided which is capable of calculating the position of a target object even though it does not detect some synchronous signal necessary for position calculation. A communication signal receiver which provides information used in the position calculation is also provided. The positioning system includes a plurality of communication signal receivers each to detect a communication signal from a target object to be tracked and synchronous signals repeatedly transmitted for timing synchronization, and to acquire a receiving time interval between the synchronous signals, a receiving time interval between the synchronization signal and the communication signal, and synchronization signal identification information; and a position calculator to calculate a position of the target object by calculating a receiving time error of the communication signal from the receiving time interval between the synchronous signals, the receiving time interval between the synchronization signal and the communication signal, and the synchronization signal identification information.
Abstract:
An active radio frequency identification (RFID) apparatus having an additional transmitter in addition to a single transmitter is provided. The active RFID apparatus includes a first transmitter including a first pseudo noise (PN) code generator to generate a direct sequence spread spectrum (DSSS) introduced by ISO/IEC (International Organization for Standardization/International Electrotechnical Commission) 24730-2 or ISO/IEC 18185-5 type B; and a second transmitter including a second PN code generator to perform an AND operation on an initial value and a fed back value and shift the resultant value of the AND operation, to perform an XOR operation on particular bits from among the shifted bits and to perform an XOR operation again on the shifted bits and the resulting value of the XOR operation to finally generate a PN code. Accordingly, where an additional PN code is added besides an existing PN code, a PN code having excellent auto correlation characteristics allowing discrimination of the PN code itself and cross-correlation characteristics providing a code discrimination ability with respect to another code can be generated.
Abstract:
Disclosed are an RFID authentication apparatus having an authentication function and a method thereof. An RFID authentication method includes determining, by an authentication reader, an AES key using authentication information received from an authentication tag, generating an output key, encrypting a predetermined length of confirmation data by using the output key, transmitting the encrypted confirmation data to the authentication tag, receiving encrypted confirm response data corresponding to the confirmation data from the authentication tag to decrypt the encrypted confirm response data, and comparing the predetermined length of the confirmation data with the decrypted confirm response data to verify authenticity of the authentication tag.
Abstract:
Disclosed is a synchronization method between a reader and tag according to an example embodiment, the method including: transmitting, by the reader, a first write command message to the tag at a first time; detecting, by the tag, the first write command message from the reader at a second time and transmitting a first response message to the reader in response to the first write message; transmitting, by the reader, a second write command message including first time information of the first time to the tag; and correcting, by the tag, a clock offset using a difference between the first time and the second time.
Abstract:
Provided is a case film for a pouch type lithium primary battery which is suitable for application in a film type lithium primary battery. The case film for a pouch type lithium primary battery includes a flexible multilayer film in which a first polymer film, a second polymer film, a metal film, and a third polymer film are sequentially stacked. The first polymer film is formed of a hydrocarbon compound substituted or non-substituted with a halogen atom. The second polymer film is formed of an amorphous or low crystalline polymer having a crystallinity of 0 to 20%. The third polymer film is formed of a crystalline polymer having a crystallinity of 40 to 100%.
Abstract:
Disclosed herein is a resource allocation method for providing load balancing and fairness for a dual ring. The resource allocation method includes the step of determining whether a bandwidth allocation request message is received from one of other nodes. If the bandwidth allocation request message is received, it is determined whether one or more of two rings of the dual ring fulfill a request of the bandwidth allocation request message. If the rings fulfill the request, a path is allocated to one of the rings having a lower weighted cost. A resource allocation information notification message is provided to other nodes. If the rings cannot fulfill the request, the process ends.