Abstract:
A component for introducing disturbances into the magnetic field of an asynchronous motor by altering a reluctance of the motor is disclosed. An asynchronous motor is provided that includes a stator having a plurality of windings that is configured to generate a rotating magnetic field when a current is provided to the plurality of windings. The asynchronous motor also includes a rotor positioned within the stator configured to rotate relative thereto responsive to the rotating magnetic field and a component separate from the stator and the rotor that is positioned within the rotating magnetic field, with the component being configured to alter a magnetic reluctance of the rotor so as create a disturbance in the rotating magnetic field.
Abstract:
The present disclosure is directed towards the prevention of high voltage instabilities within X-ray tubes. For example, in one embodiment, an X-ray tube is provided. The X-ray tube generally includes a stationary member, and a rotary member configured to rotate with respect to the stationary member during operation of the X-ray tube. The X-ray tube also includes a liquid metal bearing material disposed in a space between the shaft and the sleeve, a seal disposed adjacent to the space to seal the liquid metal bearing material in the space, and an enhanced surface area material disposed on a side of the seal axially opposite the space and configured to trap within the enhanced surface area material liquid metal bearing material that escapes the seal.
Abstract:
A component for introducing disturbances into the magnetic field of an asynchronous motor by altering a reluctance of the motor is disclosed. An asynchronous motor is provided that includes a stator having a plurality of windings that is configured to generate a rotating magnetic field when a current is provided to the plurality of windings. The asynchronous motor also includes a rotor positioned within the stator configured to rotate relative thereto responsive to the rotating magnetic field and a component separate from the stator and the rotor that is positioned within the rotating magnetic field, with the component being configured to alter a magnetic reluctance of the rotor so as create a disturbance in the rotating magnetic field.
Abstract:
The embodiments disclosed herein relate to the thermal regulation of components within an X-ray tube, and more specifically to heat transfer between the anode and the rotary mechanism to which the anode is attached. For example, in one embodiment, an X-ray tube is provided. The X-ray tube generally includes a fixed shaft, a rotating bearing sleeve disposed about the fixed shaft and configured to rotate with respect to the fixed shaft via a rotary bearing, an electron beam target disposed about the bearing sleeve and configured to rotate with the bearing sleeve, and a thermally conductive, deformable metallic gasket disposed between the target and the bearing sleeve and configured to conduct heat between the target and the bearing sleeve in operation.
Abstract:
An x-ray tube includes a cathode and a target assembly positioned to receive electrons emitted from the cathode. The target assembly includes a target and a spiral groove bearing (SGB) configured to support the target. The SGB includes a rotatable component having a first surface and a first material attached to the first surface, a stationary component having a second surface and a second material attached to the second surface, the stationary component positioned such that a gap is formed between the first material and the second material, and a liquid metal positioned in the gap. At least one of the first and second materials has a thickness greater than 0.1 mm.
Abstract:
In accordance with one embodiment, the present technique provides an X-ray tube. The X-ray tube includes an anode assembly configured to emit X-ray beams and a cathode assembly configured to emit electrons towards the anode assembly. The cathode assembly includes an insulator and a cathode post. The insulator includes a side surface, wherein the side surface includes a recessed portion. The cathode post includes a hollow interior region having an interior surface, wherein the interior surface is configured to engage with the side surface of the insulator. The cathode post may also include a foot portion that extends away from the interior surface at the end of the cathode post. The cathode post adjacent to the recessed portion of the insulator is configured to shield a triple point to reduce electrical stresses on the triple point.
Abstract:
An x-ray tube includes a cathode adapted to emit electrons, a bearing assembly comprising a rotatable shaft having a rotor hub, a target assembly attached to the rotatable shaft and positioned to receive the emitted electrons in order to generate x-rays therefrom, a rotor attached to the rotor hub at an attachment face, wherein the attachment face comprises a first material compressed against a second material, and a first anti-wear coating attached to one of the first material and the second material and positioned between the first material and the second material.
Abstract:
The embodiments disclosed herein relate to the thermal regulation of components within an X-ray tube, and more specifically to heat transfer between the anode and the rotary mechanism to which the anode is attached. For example, in one embodiment, an X-ray tube is provided. The X-ray tube generally includes a fixed shaft, a rotating bearing sleeve disposed about the fixed shaft and configured to rotate with respect to the fixed shaft via a rotary bearing, an electron beam target disposed about the bearing sleeve and configured to rotate with the bearing sleeve, and a thermally conductive, deformable metallic gasket disposed between the target and the bearing sleeve and configured to conduct heat between the target and the bearing sleeve in operation.
Abstract:
The present disclosure is directed towards the prevention of high voltage instabilities within X-ray tubes. For example, in one embodiment, an X-ray tube is provided. The X-ray tube generally includes a stationary member, and a rotary member configured to rotate with respect to the stationary member during operation of the X-ray tube. The X-ray tube also includes a liquid metal bearing material disposed in a space between the shaft and the sleeve, a seal disposed adjacent to the space to seal the liquid metal bearing material in the space, and an enhanced surface area material disposed on a side of the seal axially opposite the space and configured to trap within the enhanced surface area material liquid metal bearing material that escapes the seal.
Abstract:
The present embodiments relate to active thermal control of X-ray tubes, for example X-ray tubes used in CT imaging. In one embodiment, a system for thermal control of an X-ray tube is provided. The system includes an X-ray tube having an electron beam target, a rotary bearing supporting the target in rotation, and a coolant flow passage, at least a portion of the coolant flow passage being disposed in the center of the rotary bearing, and the coolant flow passage is configured to receive a coolant. The system also includes a coolant circulating system coupled to the coolant flow passage and configured to circulate the coolant thorough the coolant flow passage, and a control circuit coupled to the coolant circulating system and the rotary bearing, the control circuit being configured to control heat flow between components of the X-ray tube by regulating extraction of heat from the X-ray tube via the coolant and by regulating a rotation rate of the rotary bearing.