摘要:
A system is provided, which includes a rotatable gantry for receiving an object to be scanned. The system includes an x-ray source for projecting x-rays of two different energy levels towards the object and also a power supply, which energizes the x-ray source to two different voltage levels at a predetermined rate for generating x-rays at two different energy levels. The power supply in the system includes a fixed voltage source to input a voltage to a switching module with number of identical switching stages. Each stage in the switching module consists of a first switch, which charges a capacitor in a conducting state and output a first voltage, a second switch, which connects the fixed voltage source and the capacitor in series to output a second voltage in a conducting state and a diode which blocks a reverse current from the capacitor to the power supply.
摘要:
A system and method for forming x-rays. One exemplary system includes a target and electron emission subsystem with a plurality of electron sources. Each of the plurality of electron sources is configured to generate a plurality of discrete spots on the target from which x-rays are emitted. Another exemplary system includes a target, an electron emission subsystem with a plurality of electron sources, each of which generates at least one of the plurality of spots on the target, and a transient beam protection subsystem for protecting the electron emission subsystem from transient beam currents, material emissions from the target, and electric field transients.
摘要:
Methods for energy-sensitive computed tomography systems that use checkerboard filtering. A method of enhancing image analysis of projection data acquired using a detector configured with a checkerboard filter includes disposing in a system a detector to receive a transmitted beam of X-rays traversing through an object, where the system is configured so the detector receives both high- and one of total- and low-energy projection data; receiving the high- and one of total- and low-energy projection data at the detector; and then estimating an effective atomic number of the object and/or processing the projection data so as to mitigate reconstruction artifacts. The present invention has been described in terms of specific embodiment(s), and it is recognized that equivalents, alternatives, and modifications, aside from those expressly stated, are possible and within the scope of the appended claims.
摘要:
A multi-view imaging system and method is disclosed. The system comprises: multiple X-ray sources emitting X-rays in a fan-shaped beam each having a first and a second beam edge defining a fan beam angle located in a predetermined configuration around an imaging volume; a system controller configured to operate the X-ray sources; detectors, to detect X-rays and configured to generate signals in response to the detected X-rays, wherein each of the plurality of X-ray sources are configured to emit X-rays to one or more detectors, further wherein the X-ray source and two end points of a corresponding detector define a fan beam plane, further wherein a line extending from the X-ray source within the fan beam plane and through the imaging volume defines a projection direction, wherein adjacent projection directions define an angular spacing; an object conveyance device configured for transporting an object along a path of travel through the imaging volume between the X-ray sources and the detectors; and a detector interface configured to acquire the signals from the detectors, wherein the predetermined configuration is defined wherein either: the projection directions when viewed along a longitudinal axis of the image system surround the imaging volume by an angular range of about 180 degrees; or the projection directions when viewed along a longitudinal axis of the image system surround the imaging volume by an angular range of about 180°−180/Q, wherein Q is a quantity of the projection directions.
摘要:
In accordance with one embodiment, the present technique provides an X-ray source. The X-ray source includes a field emitter array having a plurality of field emitter elements disposed in a vacuum chamber and configured to emit electrons in the vacuum chamber towards an anode assembly. The X-ray source also includes an anode disposed in the vacuum chamber for receiving the electrons emitted by the field emitter array and configured to thereby generate X-ray radiation. The X-ray source further includes a source of cleaning gas coupled to the vacuum chamber, wherein the source of cleaning gas is configured to provide the cleaning gas to the vacuum chamber towards the field emitter array to reduce deposition of contaminants on or to clean contaminates from the field emitter array.
摘要:
A method and apparatus for generating x-ray beams are described. In one embodiment, the method includes operating a cathode to operating a cathode to generate an electron beam, directing the electron beam from the cathode through a selectable shaped aperture in an accelerating electrode, and impinging the electron beam at a low angle on an anode surface to form a focal spot on the anode surface.
摘要:
In accordance with one embodiment, the present technique provides an X-ray tube. The X-ray tube includes an anode assembly configured to emit X-ray beams and a cathode assembly configured to emit electrons towards the anode assembly. The cathode assembly includes an insulator and a cathode post. The insulator includes a side surface, wherein the side surface includes a recessed portion. The cathode post includes a hollow interior region having an interior surface, wherein the interior surface is configured to engage with the side surface of the insulator. The cathode post may also include a foot portion that extends away from the interior surface at the end of the cathode post. The cathode post adjacent to the recessed portion of the insulator is configured to shield a triple point to reduce electrical stresses on the triple point.
摘要:
A flat panel x-ray tube assembly is provided comprising a cathode assembly including a plurality of emitter elements. An anode substrate is included having a substrate upper surface facing the plurality of emitter elements and a substrate lower surface. The substrate upper surface is positioned parallel to the plurality of emitter elements. A plurality of target wells are formed in the substrate upper surface. Each of the plurality of target wells comprises a first angled side surface positioned at an acute angle relative to the substrate upper surface. A plurality of first target elements is applied to each to one of the first angled side surfaces. The first target elements generate x-rays in a direction perpendicular to the plurality of emitter elements in response to electrons received from one of the plurality of emitter elements.
摘要:
Methods and systems for passive resonant voltage switching are provided. One passive resonant switching system includes a voltage switching system having one or more passive resonant modules to provide a switching voltage output. Each of the passive resonant modules include switching devices configured to operate in open and closed states to produce first and second voltage level outputs from a voltage input. The passive resonant modules also include a capacitor connected to the one or more switching devices and configured to receive a system discharge energy during a resonant operating cycle when switching an output voltage from the first voltage level to the second voltage level, and to be recharged when switching from the second to first voltage level. The passive resonant modules further include a resonant inductor and an additional switching device.
摘要:
Methods and systems for passive resonant voltage switching are provided. One passive resonant switching system includes a voltage switching system having one or more passive resonant modules to provide a switching voltage output. Each of the passive resonant modules include switching devices configured to operate in open and closed states to produce first and second voltage level outputs from a voltage input. The passive resonant modules also include a capacitor connected to the one or more switching devices and configured to receive a system discharge energy during a resonant operating cycle when switching an output voltage from the first voltage level to the second voltage level, and to be recharged when switching from the second to first voltage level. The passive resonant modules further include a resonant inductor and an additional switching device.