Abstract:
A system for deploying a stent-graft from the femoral artery into the femoral vein and back into the femoral artery in order to bypass a femoral occlusion comprises a penetration catheter and a guidewire capture and stabilization catheter. The penetration catheter may be advanced contralaterally to a location above the occlusion and the capture and stabilization catheter may be introduced upwardly through the femoral vein. The penetration tool on the penetration catheter is used in multiple steps to deploy guidewires which are then used to deploy the stent-graft in the desired location.
Abstract:
A system for deploying a stent-graft from the femoral artery into the femoral vein and back into the femoral artery in order to bypass a femoral occlusion comprises a penetration catheter and a guidewire capture and stabilization catheter. The penetration catheter may be advanced contralaterally to a location above the occlusion and the capture and stabilization catheter may be introduced upwardly through the femoral vein. The penetration tool on the penetration catheter is used in multiple steps to deploy guidewires which are then used to deploy the stent-graft in the desired location.
Abstract:
The catheter apparatus may be used to assist in creating a fistula between two adjacent blood vessels. The apparatus includes a catheter for inserting into a first blood vessel which lies adjacent to a second blood vessel, the catheter having a plurality of openings through which a physician may navigate a piercing tool. The physician maneuvers the tip of the catheter to a position within the first blood vessel adjacent to a portion of the first blood vessel wall in which the physician intends to create an opening. The physician may then rotate the piercing tool within the catheter and extend the piercing tool through one opening at a time, without rotating the catheter, until the physician chooses an opening that is properly aimed at the second blood vessel. Such a configuration allows for a wide arc of potential firing space.
Abstract:
A trifurcated stent apparatus for use by a physician includes a main stent for inserting into a trifurcated blood vessel and two side stents. The main stent includes two openings on the side which are the same diameter as the corresponding side stents. The main stent may be configured to receive a first end of a first side stent and a first end of a second side stent, to create a trifurcated stent. Alternatively, the side stents and the main stent may form a single integrated unit. The main stent and side stents can include one-way valves on one or more of the ends. The one or more one-way valves may be opened or closed, depending on whether the physician desires that fluid pass through. While closed, the valve may be configured to allow passage of various cardiovascular instruments, including but not limited to guidewires, catheters, balloons, or any other device used in blood vessel operations, while not allowing the passage of any fluids.
Abstract:
Disclosed is an improved pointed instrument for insertion into blood vessels where an occlusion arises or terminates too closely to the insertion site for proper sheath placement. The pointed instrument exhibits supportive characteristics that allow for a sheath to be placed in an otherwise inaccessible insertion site. One embodiment of the present disclosure features a pointed instrument having a flexible portion, which is generally straight outside the body, but agglomerates once inside a blood vessel.
Abstract:
A catheter apparatus, tissue-engineered vessel and a method of using the tissue-engineered vessel are provided for the connection of two adjacent blood vessels. In some embodiments, the tissue engineered vessel may be affixed to a stent, or a stent may be inserted into an area to be treated first, and then the tissue-engineered vessel may be affixed to the stent. The tissue-engineered vessel may include a living adventitia, a decellularized internal membrane, and/or an endothelium.