Abstract:
A tire assembly includes a tire carcass body and an air tube body extending between an outward facing tire body surface and an inward tire body surface. The air tube body has an enclosed hollow enclosed outlet end at a first end and an enclosed hollow inlet end at an opposite second end. An air passageway extends through the air tube body from the inlet end to the outlet end. The outlet end is positioned to face exposed from the outward tire body surface and the inlet end is positioned to face exposed from the inward tire body surface. The air tube body is integrally formed of resilient flexible material composition and includes a hollow outer casing and one or more hollow air cables positioned within the casing for regulating the rate of air flow from the inlet end to the outlet end. The air tube body may follow a non-linear U-shaped path that surrounds a tire body bead core between the outward tire body surface and the inward tire body surface and be incorporated into the green tire build without disrupting the tire building and curing process or compromising the structural integrity or form of any of the green tire building components.
Abstract:
A method of constructing a self-inflating tire includes: forming a pre-cure green tire body; positioning an air passageway body within the green tire body to extend between an outward facing green tire body surface and the tire cavity, the air passageway body having an enclosed air passageway extending between a hollow body outlet end facing the tire cavity and a hollow inlet end facing outward from the outward facing green tire body surface; curing the green tire body into a finished cured tire body; affixing one or more tapping device(s) over one or both ends of the air passageway body; and establishing through a hollow protrusion member of the tapping device an air flow path extending between the air passageway within the air passageway body and a vent opening within the tapping device. The method includes a routing of the air passageway body through the green tire body along a non-linear path between an outward tire body surface and the inward tire body surface; wherein the non-linear path to at least partially surround a first tire body bead core; and wherein the air passageway body is positioned between overlapping green tire components such as first and second tire turn-up chafer components.
Abstract:
A tire includes a carcass, a tread band having a radially outer tread surface and a plurality of radially extending recesses, and an anti-slip structure disposed in one of the radially extending recesses. The anti-slip structure includes a first end portion, a second triangular middle portion, and a third triangular end portion. The third end portion includes three radially extending projections for providing traction over ice. The shape of the radially extending recess corresponds to the shape of the anti-slip structure such that the anti-slip structure is both radially and rotationally secured within the recess relative to the tread band of the tire.
Abstract:
A method of constructing a self-inflating tire includes: forming a pre-cure green tire body; positioning an air passageway body within the green tire body to extend between an outward facing green tire body surface and the tire cavity, the air passageway body having an enclosed air passageway extending between a hollow body outlet end facing the tire cavity and a hollow inlet end facing outward from the outward facing green tire body surface; curing the green tire body into a finished cured tire body; affixing one or more tapping device(s) over one or both ends of the air passageway body; and establishing through a hollow protrusion member of the tapping device an air flow path extending between the air passageway within the air passageway body and a vent opening within the tapping device. The method includes a routing of the air passageway body through the green tire body along a non-linear path between an outward tire body surface and the inward tire body surface; wherein the non-linear path to at least partially surround a first tire body bead core; and wherein the air passageway body is positioned between overlapping green tire components such as first and second tire turn-up chafer components.
Abstract:
A retractable stud pin assembly is described for use in a conventional tire. The stud pin assembly includes a housing having an elastomer compartment and a spring in cooperation with the elastomer. A stud pin is mounted to the spring. The assembly may further optionally include a fluid compartment in cooperation with the elastomer compartment and the spring. The assembly may further include a second compression spring, which cooperates with the first spring and stud pin. An optional adjustment nut may be used to manually raise and lower the pin height as desired. An optional adjustment pin may also be used to extend into an optional fluid compartment to fine tune the pin height.
Abstract:
A tire mold is described that includes a plurality of tread molding segments having an inner surface for molding the tire tread. The mold further includes a plurality of sidewall plates having an inner surface for molding the tire sidewall. The tread mold segments together with the sidewalls cooperate to form a tire molding cavity. The sidewall plate further comprises a slot that extends from the outer surface of the tread segment to the inner mold surface, and has a piston having a head slidably received in the slot. A pin is positioned between the piston head and an end of the slot. The mold further includes actuating means for actuating the piston in the slot when the mold is closed.
Abstract:
A retractable stud pin assembly is described for use in a conventional tire. The stud pin assembly includes a housing having an elastomer compartment and a spring in cooperation with the elastomer. A stud pin is mounted to the spring. The assembly may further optionally include a fluid compartment in cooperation with the elastomer compartment and the spring. The assembly may further include a second compression spring, which cooperates with the first spring and stud pin. An optional adjustment nut may be used to manually raise and lower the pin height as desired. An optional adjustment pin may also be used to extend into an optional fluid compartment to fine tune the pin height.
Abstract:
A self-inflating tire system includes a compression actuator assembly mounted to a tire carcass for compressing air for delivery to a tire cavity. The compression actuator assembly includes a hollow containment body formed from a resilient deformable material composition and containing a quantity of a non-compressible medium. The containment body is affixed to a relatively high flex-deformation region of the tire carcass and reciprocally transforms between a deformed state and a non-deformed state responsive to deformation and recovery of the tire high flex-deformation region in a rolling tire. Accordingly, the containment body in the deformed state displaces a pressurized displaced quantity of the non-compressible medium which generates a compression force for application to a volume of air delivered to the tire cavity. A pump assembly affixes to the tire carcass and includes valves for reciprocally opening and closing the inlet opening and the outlet opening of a compressor body synchronously with the cyclic transformation of the containment body.
Abstract:
A structure for a tread pattern of a pneumatic tire includes a radially extending pedestal, a first set of cylindrical voids extending radially through the pedestal, a second set of cylindrical voids extending radially through the pedestal, and a radially extending void ring circumscribing the pedestal.
Abstract:
A tire includes a carcass, a tread band having a radially outer tread surface and a plurality of radially extending recesses, and an anti-slip structure disposed in one of the radially extending recesses. The anti-slip structure includes a first circular inner portion, a second outer portion, and a third core portion. The third core portion comprises an assembly of three pin structures for providing traction over ice. Each pin structure has a wedge-shaped base portion secured within the first circular inner portion and a pin extending through the second outer portion to the tread surface. The three wedge-shaped base portions combine to form a circular base portion for the assembly.