摘要:
A compact antenna and a communication apparatus using the same are provided. An antenna includes a strip-shaped conductor in which a plurality of strip-shaped m-th order elements, where m is an integer of 3 or more, are sequentially connected to one another. Herein n-th order elements constituting the strip-shaped conductor, where n is all integers equal to or more than 2 and equal to or less than m, are configured to be p n-th order elements into which an (n−1)-th order element is divided, where p is an integer of 3 or more, and the n-th order elements divided into p have bent shapes at respective boundary parts between the n-th order elements and are located so that a vector direction from one end of the (n−1)-th order element to the other end thereof does not vary. A compact high-performance antenna is obtained.
摘要:
The invention relates to a high-frequency transmission line connection structure, a circuit board having the connection structure, a high-frequency module having the circuit board, and a radar apparatus. A first laminated waveguide sub-line part (21) includes a pair of main conductor layers that oppose each other in a thickness direction with a dielectric layer (31) having the same thickness as a dielectric layer (31) of a microstrip line (1) interposed therebetween. A second laminated waveguide sub-line part (22) includes dielectric layers (31, 32) thicker than the dielectric layer of the first laminated waveguide sub-line part (21). A laminated waveguide main-line part (23) includes dielectric layers (31, 32, 33) thicker than the dielectric layers of the second laminated waveguide sub-line part (22). A conversion part (10) connected to the microstrip line (1) is formed by integrating with an upper main conductor layer constituting the respective line parts.
摘要:
The invention relates to a high-frequency transmission line connection structure, a circuit board having the connection structure, a high-frequency module having the circuit board, and a radar apparatus. A first laminated waveguide sub-line part (21) includes a pair of main conductor layers that oppose each other in a thickness direction with a dielectric layer (31) having the same thickness as a dielectric layer (31) of a microstrip line (1) interposed therebetween. A second laminated waveguide sub-line part (22) includes dielectric layers (31, 32) thicker than the dielectric layer of the first laminated waveguide sub-line part (21). A laminated waveguide main-line part (23) includes dielectric layers (31, 32, 33) thicker than the dielectric layers of the second laminated waveguide sub-line part (22). A conversion part (10) connected to the microstrip line (1) is formed by integrating with an upper main conductor layer constituting the respective line parts.