摘要:
A transistor is formed by providing a semiconductor layer and forming a control electrode overlying the semiconductor layer. A portion of the semiconductor layer is removed lateral to the control electrode to form a first recess and a second recess on opposing sides of the control electrode. A first stressor is formed within the first recess and has a first doping profile. A second stressor is formed within the second recess and has the first doping profile. A third stressor is formed overlying the first stressor. The third stressor has a second doping profile that has a higher electrode current doping concentration than the first profile. A fourth stressor overlying the second stressor is formed and has the second doping profile. A first current electrode and a second current electrode of the transistor include at least a portion of the third stressor and the fourth stressor, respectively.
摘要:
A transistor is formed by providing a semiconductor layer and forming a control electrode overlying the semiconductor layer. A portion of the semiconductor layer is removed lateral to the control electrode to form a first recess and a second recess on opposing sides of the control electrode. A first stressor is formed within the first recess and has a first doping profile. A second stressor is formed within the second recess and has the first doping profile. A third stressor is formed overlying the first stressor. The third stressor has a second doping profile that has a higher electrode current doping concentration than the first profile. A fourth stressor overlying the second stressor is formed and has the second doping profile. A first current electrode and a second current electrode of the transistor include at least a portion of the third stressor and the fourth stressor, respectively.
摘要:
A semiconductor fabrication process includes patterning a hard mask over a semiconductor substrate to expose an isolation region and forming a trench in the isolation region. A flowable dielectric is deposited in the trench to partially fill the trench and a capping dielectric is deposited overlying the first oxide to fill the trench. The substrate may be a silicon on insulator (SOI) substrate including a buried oxide (BOX) layer and the trench may extend partially into the BOX layer. The flowable dielectric may be a spin deposited flowable oxide or a CVD BPSG oxide. The flowable dielectric isolation structure provides a buffer that prevents stress induced on one side of the isolation structure from creating stress on the other side of the structure. Thus, for example, compressive stress created by forming silicon germanium on silicon in PMOS regions does not create compressive stress in NMOS regions.
摘要:
A method is disclosed of forming an extension region for a transistor having a gate structure overlying a compound semiconductor layer. An anneal is used either before or after deep source/drain implantation to diffuse a dopant from a raised region adjacent the gate structure to a location underlying the gate structure. A non-diffusing activation process can be used to activate source/drain implants when the dopants from the raised region are diffused prior to deep source/drain implantation.