摘要:
A method includes forming a gate stack over a semiconductor region, and recessing the semiconductor region to form a recess adjacent the gate stack. A silicon-containing semiconductor region is epitaxially grown in the recess to form a source/drain stressor. Arsenic is in-situ doped during the step of epitaxially growing the silicon-containing semiconductor region.
摘要:
Highly uniform silicon/germanium nanoparticles can be formed into stable dispersions with a desirable small secondary particle size. The silicon/germanium particles can be surface modified to form the dispersions. The silicon/germanium nanoparticles can be doped to change the particle properties. The dispersions can be printed as an ink for appropriate applications. The dispersions can be used to form selectively doped deposits of semiconductor materials such as for the formation of photovoltaic cells or for the formation of printed electronic circuits.
摘要:
Highly uniform silica nanoparticles can be formed into stable dispersions with a desirable small secondary particle size. The silica particles can be surface modified to form the dispersions. The silica nanoparticles can be doped to change the particle properties and/or to provide dopant for subsequent transfer to other materials. The dispersions can be printed as an ink for appropriate applications. The dispersions can be used to selectively dope semiconductor materials such as for the formation of photovoltaic cells or for the formation of printed electronic circuits.
摘要:
Methods, devices and systems for a FinFET are provided. One method embodiment includes forming a FinFET by forming a relaxed silicon germanium (Si1-XGeX) body region for a fully depleted Fin field effect transistor (FinFET) having a body thickness of at least 10 nanometers (nm) for a process design rule of less than 25 nm. The method also includes forming a source and a drain on opposing ends of the body region, wherein the source and the drain are formed with halo ion implantation and forming a gate opposing the body region and separated therefrom by a gate dielectric.
摘要:
A light emitting apparatus may include a gate metal positioned between a p-type contact and an n-type contact, a gate oxide or other dielectric stack positioned below and attached to the gate metal, a Ge or Si1-zGez channel positioned below and attached to the gate dielectric stack, a buffer, and a silicon substrate positioned below and attached to the buffer. The light emitting apparatus may alternatively include a gate metal positioned between a p-type contact and an n-type contact, a wide bandgap semiconductor positioned below and attached to the gate metal, a Ge or Si1-zGez channel positioned below and attached to the wide bandgap semiconductor, a buffer, and a silicon substrate positioned below and attached to the buffer. Embodiments of the light emitting apparatus may be configured for use in current-injected on-chip lasers, light emitting diodes or other light emitting devices.
摘要:
Chemical vapor deposition processes utilize higher order silanes and germanium precursors as chemical precursors. The processes have high deposition rates yet produce more uniform films, both compositionally and in thickness, than films prepared using conventional chemical precursors. In preferred embodiments, trisilane is employed to deposit SiGe-containing films that are useful in the semiconductor industry in various applications such as transistor gate electrodes.
摘要:
A method of fabrication of a metal oxide semiconductor field effect transistor includes first providing a substrate on which a gate structure is formed. Afterwards, a portion of the substrate is removed to form a first recess in the substrate at both ends of the gate structure. Additionally, a source/drain extension layer is deposited in the first recess and a number of spacers are formed at both ends of the gate structure. Subsequently, a portion of the source/drain extension and the substrate are removed to form a second recess in the source/drain extension and a portion of the substrate outside of the spacer. In addition, a source/drain layer is deposited in the second recess. Because the source/drain extension and the source/drain layer have specific materials and structures, short channel effect is improved and the efficiency of the metal oxide semiconductor field effect transistor is improved.
摘要:
A method of transferring a layer of a first material onto a second substrate of a second material includes, a step of forming a first embrittlement plane in a first substrate in first material, by a first ion and/or atom implantation through a first face of said substrate, a step of forming a second embrittlement plane in said first substrate, by a first ion and/or atom implantation through a second face of said substrate, in order to reduce a curvature of this first substrate, a step of assembling the first and second substrates, and a step of separating a layer from the first substrate at the level of the first embrittlement plane, without separation at the level of the second embrittlement plane.
摘要:
Methods and structures for monolithically integrating monocrystalline silicon and monocrystalline non-silicon materials and devices are provided. In one structure, a semiconductor structure includes a silicon substrate and a first monocrystalline semiconductor layer disposed over the silicon substrate, wherein the first monocrystalline semiconductor layer has a lattice constant different from a lattice constant of relaxed silicon. The semiconductor structure further includes an insulating layer disposed over the first monocrystalline semiconductor layer in a first region, a monocrystalline silicon layer disposed over the insulating layer in the first region, and a second monocrystalline semiconductor layer disposed over at least a portion of the first monocrystalline semiconductor layer in a second region and absent from the first region. The second monocrystalline semiconductor layer has a lattice constant different from the lattice constant of relaxed silicon.
摘要:
Highly uniform silica nanoparticles can be formed into stable dispersions with a desirable small secondary particle size. The silican particles can be surface modified to form the dispersions. The silica nanoparticles can be doped to change the particle properties and/or to provide dopant for subsequent transfer to other materials. The dispersions can be printed as an ink for appropriate applications. The dispersions can be used to selectively dope semiconductor materials such as for the formation of photovoltaic cells or for the formation of printed electronic circuits.