摘要:
A power management scheme for a wireless communications device processor substantially implemented on a single CMOS integrated circuit is described. By incorporating controls for sleep and wake-up mode transitions in the processor's control logic, improved power savings with reduced latency is provided, obviating the need for hardware-focused solutions with elaborate signaling mechanisms. A fully integrated power management with staged wake-up operations controlled by the MAC solution consumes less power than the conventional wireless LAN solutions in standby mode.
摘要:
The shifters (30, 32) that a floating-point processor (10)'s addition pipeline (14) uses to align or normalize floating-point operands' mantissas before addition or subtraction shift a given mantissa pair one more bit to the left for subtraction than for addition. As a result, the addition pipeline's rounding circuitry (160, 166) does not need to be capable of adding round bits in as many positions as it would without the shift difference, so it can be simpler and faster. Similarly, circuitry (164a–g and 188) employed for normalization after addition and subtraction can be simpler because it does not have to implement as shift options.
摘要:
A power management scheme for a wireless communications device processor substantially implemented on a single CMOS integrated circuit is described. By incorporating controls for sleep and wake-up mode transitions in the processor's control logic, improved power savings with reduced latency is provided, obviating the need for hardware-focused solutions with elaborate signaling mechanisms. A fully integrated power management with staged wake-up operations controlled by the MAC solution consumes less power than the conventional wireless LAN solutions in standby mode.
摘要:
A method and apparatus for operating on floating point numbers is provided that accepts two floating point numbers as operands in order to perform addition, a rounding adder circuit is provided which can accept the operands and a rounding increment bit at various bit positions. The circuit uses full adders at required bit positions to accommodate a bit from each operand and the rounding bit. Since the proper position in which the rounding bit should be injected into the addition may be unknown at the start, respective low and high increment bit addition circuits are provided to compute a result for both a low and a high increment rounding bit condition. The final result is selected based upon the most significant bit of the low rounding bit increment result. In this manner, the present rounding adder circuit eliminates the need to perform a no increment calculation used to select a result, as in the prior art. Through the use of full adders, the circuit not only accounts for the round increment bit, but can accept increment bits at any bit position to perform operations such as two's complement, thus further reducing the operations required to perform a desired floating point mathematical operation.
摘要:
A power management scheme for a wireless communications device substantially implemented on a single CMOS integrated circuit is described. The present invention provides a method and apparatus for generating first and second clock signals for a wireless communication device, with the first and second clock signals corresponding first and second power levels, depending on the operating mode of the wireless communication unit. In the first operating state, the transceiver in the RF analog module is operational and the clock generator provides a first clock signal having the high-speed, high-accuracy characteristics necessary to maintain efficient operation of the transceiver. In a second operating state, the transceiver in the RF analog module is turned off. In this second operational state, the clock generator provides a second clock signal having a frequency and quality sufficient to maintain efficient operation of the digital modules in the wireless communication device. In the second operational state, the high-speed, high-accuracy clock is replaced by a low-power oscillator when the wireless communication unit is operating in a low power mode.
摘要:
Computer method and apparatus for performing a square root or division operation generating a root or quotient. A partial remainder is stored in radix-2 or radix-4 signed digit format. A decoder is provided for computing a root or quotient digit, and a correction term dependent on a number of the most significant digits of the partial remainder. An adder is provided for computing the sum of the signed digit partial remainder and the correction term in binary format, and providing the result in signed digit format. The adder computes a carry out independent of a carry in bit and a sum dependent on a Carry_in bit providing a fast adder independent of carry propagate delays. The scaler performs a multiplication by two of the result output from the adder in signed digit format to provide a signed digit next partial remainder.
摘要:
The invention provides computer apparatus for performing a square root or division operation generating a root or quotient. A partial remainder is stored in radix-2 or radix-4 signed digit format. A decoder is provided for computing a root or quotient digit, and a correction term dependent on a number of the most significant digits of the partial remainder. An adder is provided for computing the sum of the signed digit partial remainder and the correction term in binary format, and providing the result in signed digit format. The adder computes a carry out independent of a carry in bit and a sum dependent on a Carry_in bit providing a fast adder independent of carry propagate delays. The scaler performs a multiplication by two of the result output from the adder in signed digit format to provide a signed digit next partial remainder.
摘要:
A method and apparatus are presented for efficient implementation of logic and arithmetic functions that generate sets of mutually exclusive output signals. Such a logic family includes a network of NMOS transistors that implements a desired logic function. Coupled to that network is a minimal number of PMOS devices for providing logic level restoration and for compensating for any voltage drops due to the NMOS transistors. With such a structure, the speed, area and power consumption characteristics of logic functions are improved.
摘要:
A high-speed CMOS latch includes at each storage node a pull-up P-transistor with its gate tied to a dynamic node, and a pull-down N-transistor with its gate controlled by the inverse of the states of the remaining dynamic nodes. The P-transistor drives the storage node high to VDD, and the N-transistor drives the node low to VSS, as appropriate. During evaluation, one dynamic node discharges to a low state and in response each storage node is driven relatively quickly to the desired high or low state through either the associated pull-up or pull-down transistor. Precharging P-transistors drive the dynamic nodes high during precharge periods. As the dynamic nodes go high, they turn off all of the pull-up and pull-down transistors that drive the latch storage nodes, and the latch retains the evaluated state of the dynamic nodes until the start of the next evaluation cycle. Accordingly, the latch does not require a separate clock.
摘要:
A power management scheme for a wireless communications device processor substantially implemented on a single CMOS integrated circuit is described. By incorporating controls for sleep and wake-up mode transitions in the processor's control logic, improved power savings with reduced latency is provided, obviating the need for hardware-focused solutions with elaborate signaling mechanisms. A fully integrated power management with staged wake-up operations controlled by the MAC solution consumes less power than the conventional wireless LAN solutions in standby mode.