Abstract:
In one embodiment, an apparatus can include a service broker configured to: (i) register a service classifier, and to provide context information to the service classifier; and (ii) register a plurality of service nodes. The service broker can also receive capability and service requests from the service classifier. Further, the context information can include a service header, a reachability indication, and an encapsulation, where the service header and the encapsulation may be attached or related to a packet in the service classifier. In addition, the service classifier can use this information to redirect the packet to a first service node.
Abstract:
A blade router for increased interface scalability is provided. The blade router may address interface scalability by having each of the linecards manage its interfaces locally and may use the concept of virtual and local interfaces for intelligent forwarding. The blade router may appear as a single router from the customer perspective during configuration. For some embodiments, two virtual interfaces may be used, one for regular interface traffic and another for Network Address Translation (NAT)-enabled interface traffic.
Abstract:
In one embodiment, a list of source identifiers is maintained at a virtual switch. These source identifiers are allowed to send packets through the virtual switch to ports in a private virtual local area network (PVLAN). When a packet is received at the virtual switch from a particular source destined for a particular port in the PVLAN, the virtual switch determines whether a particular identifier associated with the particular source matches one of the source identifiers in the list. If that particular source identifier is not on the list, the packet is prevented from being forwarded to the particular port in the PVLAN.
Abstract:
A method is disclosed for performing message payload processing functions in a network element on behalf of an application. According to one aspect, a network element intercepts data packets comprising network layer or transport layer headers having an address of a destination which destination differs from the network element. The network element determines whether information contained in layer 2-4 headers of the data packet satisfies specified criteria. If the information satisfies the specified criteria, the network element directs the data packets to a blade of the network element that performs processing based on an application layer message at least partially contained in the data packets. If the information does not satisfy the specified criteria, the network element forwards the data packets towards the destination without sending them to the blade.
Abstract:
A blade switch for increased interface scalability is provided. The blade switch may address interface scalability by having each of the switch linecards manage its interfaces locally and may use the concept of virtual and local interfaces for intelligent forwarding. The blade switch may appear as a single network switch having a single bridge ID from the network perspective during operation and from the customer perspective during configuration.
Abstract:
Methods and apparatus for providing a device for forwarding packets in a network are disclosed. A first router and a second router having a shared set of interfaces are provided, enabling the first router and the second router to share forwarding data for forwarding packets on the shared set of interfaces.
Abstract:
Methods and apparatus for providing a device for forwarding packets in a network are disclosed. A first router and a second router having a shared set of interfaces are provided, enabling the first router and the second router to share forwarding data for forwarding packets on the shared set of interfaces.
Abstract:
Method and system for providing access layer satellite architecture in a data network including receiving a data packet from an access layer network device, the data packet including a Virtual Local Area Network (VLAN) identifier associated with a port on the access layer network device, performing a route lookup procedure based on the received data packet to determine a destination of the data packet, updating an ARP table with a Media Access Control (MAC) address associated with the VLAN identifier and the port of the received data packet, and transmitting the data packet to a destination network device, is disclosed.
Abstract:
Method and system for providing access layer satellite architecture in a data network including receiving a data packet from an access layer network device, the data packet including a Virtual Local Area Network (VLAN) identifier associated with a port on the access layer network device, performing a route lookup procedure based on the received data packet to determine a destination of the data packet, updating an ARP table with a Media Access Control (MAC) address associated with the VLAN identifier and the port of the received data packet, and transmitting the data packet to a destination network device, is disclosed.
Abstract:
A method is disclosed for performing message payload processing functions in a network element on behalf of an application. According to one aspect, a network element receives user-specified input that indicates a particular message classification. The network element also receives one or more data packets. Based on the data packets, the network element determines that an application layer message, which is collectively contained in payload portions of the data packets, matches the particular message classification. The network element processes at least a portion of the message by performing, on behalf of the application to which the message is directed, and relative to at least the portion of the message, one or more actions that are (a) specified in the user-specified input and (b) associated with the particular message classification.