Abstract:
A system for delivering power to a device in a specified voltage range is disclosed. The system includes a power delivery network, characterized by a response function, to deliver power to the device. A current computation unit stores values representing a sequence of current amplitudes drawn by the device on successive clock cycles, and provides them to a current to voltage computation unit. The current to voltage computation unit filters the current amplitudes according to coefficients derived from the response function to provide an estimate of the voltage seen by the device. Operation of the device is adjusted if the estimated voltage falls outside the specified range.
Abstract:
A system for delivering power to a device in a specified voltage range is disclosed. The system includes a power delivery network, characterized by a response function, to deliver power to the device. A current computation unit stores values representing a sequence of current amplitudes drawn by the device on successive clock cycles, and provides them to a current to voltage computation unit. The current to voltage computation unit filters the current amplitudes according to coefficients derived from the response function to provide an estimate of the voltage seen by the device. Operation of the device is adjusted if the estimated voltage falls outside the specified range.
Abstract:
A system for delivering power to a device in a specified voltage range is disclosed. The system includes a power delivery network, characterized by a response function, to deliver power to the device. A current computation unit stores values representing a sequence of current amplitudes drawn by the device on successive clock cycles, and provides them to a current to voltage computation unit. The current to voltage computation unit filters the current amplitudes according to coefficients derived from the response function to provide an estimate of the voltage seen by the device. Operation of the device is adjusted if the estimated voltage falls outside the specified range.
Abstract:
A processor includes a digital throttle to monitor the activity of various units of the processor's instruction execution pipeline, and to determine a power state for the processor from the monitored activity. One of two or more power control mechanisms is engaged, responsive to the power state of the processor reaching a threshold.
Abstract:
An architecture for registers and/or memory may provide a selectively disable payload portion. The architecture induced energy conservation. The architecture may include two or more payload portions for storage of payload data and a portion for storage of administrative data. Based on the contacts of the administrative data, certain payload portions may be enabled or disabled.
Abstract:
Present disclosure relates to a method (30) for inventory management in a medical facility. The method includes steps of receiving a user input (3) related to one or more medical procedures by an input unit (2), receiving and processing the user input (3) by a processing unit (22), and based on such processing, retrieving a mapping information (11) for the one or more medical procedures and a historical information (16) for the one or more medical procedures from a memory device (10), and processing the mapping information (11) and the historical information (16) by the processing unit (22), and generating at least one of an inventory forecast (23) related to the inventory of items required by a medical facility, or a procedure forecast (24) related to number of medical procedures to be taking place in the medical facility, or combination thereof. The mapping information (11) relates to mapping between a medical procedure and an inventory of items required to carry out the medical procedure, the historical information (16) is related to consumption of items in past for the one or more medical procedures, the historical information (16) is part of a historical database (15) stored in the memory device (10).
Abstract:
The present invention provides a mechanism for adjusting the activity of an integrated digital circuit such as a processor to reduce voltage changes attributable to current changes triggered by clock gating. The processor includes one or more functional units and a current control circuit that monitors activity states of the processor's functional units to estimate the current consumed over n clock cycles. The current control circuit estimates the current change for a given clock cycle from the n activity states and compares the estimated current change with first and second thresholds. The processors activity is decreased if the estimated current change is greater than the first threshold, and the processor activity is decreased if the estimated current change is less than the second threshold.
Abstract:
A system for delivering power to a device in a specified voltage range is disclosed. The system includes a power delivery network, characterized by a response function, to deliver power to the device. A current computation unit stores values representing a sequence of current amplitudes drawn by the device on successive clock cycles, and provides them to a current to voltage computation unit. The current to voltage computation unit filters the current amplitudes according to coefficients derived from the response function to provide an estimate of the voltage seen by the device. Operation of the device is adjusted if the estimated voltage falls outside the specified range.
Abstract:
A system for delivering power to a device in a specified voltage range is disclosed. The system includes a power delivery network, characterized by a response function, to deliver power to the device. A current computation unit stores values representing a sequence of current amplitudes drawn by the device on successive clock cycles, and provides them to a current to voltage computation unit. The current to voltage computation unit filters the current amplitudes according to coefficients derived from the response function to provide an estimate of the voltage seen by the device. Operation of the device is adjusted if the estimated voltage falls outside the specified range.
Abstract:
A mechanism is disclosed for determining a voltage at a device in a power delivery network. The mechanism includes determining an impulse response for the power delivery network, and tracking the current consumed by the device as it operates over a sequence of clock cycles. The activity profile is filtered using a representation of the impulse response to provide a profile of the voltages at the device.