Abstract:
In one embodiment, the method includes receiving signals from user equipment, despreading the received signals by applying an unused channelization code, and determining the uplink noise power based on output of the despreading.
Abstract:
A method for implementing permanent ring network protection in an MESH network, the method includes the following steps: a node in a ring network protection group informing, when detecting a certain span fails, other nodes in the ring network protection group of the failure information (11); each node in the ring network protection group switching a service that is affected by the failure to a protection path thereof for transmission (12); searching for a substitute path for the failed span in idle resources of the MESH network (13); establishing a new ring network protection group by using the substitute path and sections that are not affected by the failure in the ring network protection group (14); and switching the service that is affected by the failure from being transmitted via the protection path to being transmitted via the substitute path (15). The present invention is capable of providing the permanent ring network protection function for all the services on the ring network.
Abstract:
Advance training information is provided to a receiving Home network station via auxiliary coding, synchronized and/or included in the relevant Ethernet type packet. The advance training information may be, e.g., past equalizer, timing recovery circuit, AGC circuit, echo canceler values resulting from the reception of a previous frame. The training information may be, e.g., an early identity of the source of the packet, with a subsequent lookup performed by the receiving station for predetermined training value(s), or the training values themselves may be transmitted to the home network receiver via auxiliary coding. The auxiliary coding information may be transmitted before and/or during the frame training period of the relevant frame. This permits use of predetermined training values specific to the particular transmitter based on past frames received from that same transmitter during the training period for the received signal to be further refined from that determined from the auxiliary coding, resulting in more efficient and more accurate training of, e.g., a receiving equalizer, time recovery circuits, AGC, echo canceler, etc. Exemplary auxiliary coding techniques include, e.g., BPSK, FSK, QAM.
Abstract:
An improved multi-channel receiver for satellite broadcast applications or the like. In an exemplary embodiment, the receiver has an adaptive equalizer configurable to operate with QPSK or 8PSK modulated signals. In the equalizer, a slicer table memory responsive to an 8-level quantizer (slicer) and a select signal is configured to map the output of the quantizer into QPSK or 8PSK symbol coordinates depending on whether the QPSK or the 8PSK signal is being received. The slicer table memory may be loaded with the symbol coordinates calculated from data in the 8PSK signal. A pattern matcher determines if the 8PSK or the QPSK signal is being received and asserts the select signal to configure the slicer table memory accordingly.
Abstract:
A method for extending a tracking range of a PLL includes the steps of: establishing an initial tracking window of the PLL, the tracking window having a first width associated therewith; and dynamically adjusting the tracking window of the PLL within an extended tracking range when a frequency of an input signal supplied to the PLL is outside of the tracking window, the extended tracking range having a second width associated therewith which is greater than the first width.
Abstract:
An automatically switched optical network includes several areas of a transmission plane and a control plane, and a method for data transmission in the network includes that when the control plane has detected at least one partition of an area separated from other partitions of the area, a route over area is realized between the separated partitions of the area by the way of virtual link in the area. When several partitions exist in a certain area of the network, which can not be connected with each other through routes within the area, and the data transmission can not be performed between these partitions, a hierarchical route in the case of the area of ASON transmission plane being parted is realized by the method, so when the several separated partitions are caused by link fault in a certain area, the hierarchical route over area can be realized for the partitions of the area.
Abstract:
A method for extending a tracking range of a PLL includes the steps of: establishing an initial tracking window of the PLL, the tracking window having a first width associated therewith; and dynamically adjusting the tracking window of the PLL within an extended tracking range when a frequency of an input signal supplied to the PLL is outside of the tracking window, the extended tracking range having a second width associated therewith which is greater than the first width.
Abstract:
An improved multi-channel receiver for satellite broadcast applications or the like. In an exemplary embodiment, an AGC loop, under the control of an AGC processor, controls the gain of an analog sub-receiver adapted to simultaneously receive multiple signals to achieve a desired AGC setpoint signal intensity from the sub-receiver. Multiple digital demodulators, coupled to the sub-receiver by an analog-to-digital converter (ADC), demodulate the multiple received signals. The AGC controller, based upon which of the received signals are being demodulated, selects the desired AGC setpoint from a table of setpoints. The AGC controller may also provide selective power control to circuitry in the receiver and select the resolution of the ADC. The controller updates the AGC loop with step values selected from a group of values by an AGC control algorithm. Different groups of step values may be used by the controller depending on whether the signals are fading or not.
Abstract:
An improved multi-channel receiver for satellite broadcast applications or the like. In an exemplary embodiment, a primary AGC loop controls an analog sub-receiver adapted to simultaneously receive multiple signals. Multiple digital demodulators, coupled to the sub-receiver, demodulate the multiple received signals. Multiple secondary AGC loops, one for each received signal, compensate for variations in demodulated signal strengths caused by the primary AGC loop. A feed-forward AGC compensation technique generates scalar control values for scaling the demodulated signals before the demodulated signals are processed by the secondary AGC loops. This at least partially compensates for gain variations caused by the primary AGC, reducing received signal drop-outs before the secondary AGC loops can compensate for the gain variations. Because of systemic delays in the sub-receiver and the demodulators, the scalar control values are independently timed to be coincident with the variations in the demodulated signal strengths caused by the primary AGC loop.
Abstract:
A system for, and method of, recognizing zero-amplitude symbols in a quadrature amplitude modulated (QAM) signal and a digital receiver incorporating the system or the method. In one embodiment, the system includes: (1) an amplitude detector that extracts a candidate symbol from the signal and locates the candidate symbol relative to a constellation of symbols and (2) a zero-amplitude symbol interpreter, associated with the amplitude detector, that recognizes the candidate symbol as being a zero-amplitude symbol when the candidate symbol is closer to an origin of the constellation than to symbols proximate thereto.