Abstract:
Fiber network for interrogating fiber-optic sensors in a first Passive Optical Network (PON) and in a second PON, the fiber network comprising a test signal transceiver for emitting query signals and for receiving response signals, a first PON and a second PON. Each PON comprises a light source for generating telecommunication signals and a fiber-optic sensor. Each PON can transmit the telecommunication signals to a plurality of subscribers, and is optically connected to the test signal transceiver such that the query signals can be fed into the respective PON and propagate in the PON to the fiber-optic sensor, and such that the test signal transceiver can receive response signals from the fiber-optic sensor through the PON. The fiber network further comprises a query signal splitter, optically connected to the test signal transceiver and to the PONs such that it can feed a query signal into the PONs simultaneously, and such that it can feed response signals from the PONs into the test signal transceiver.
Abstract:
Passive fibre-optic enclosure comprising, a) one or more fibre-optic functional units of a telecommunication network, optically connectable, via an optical fibre, with a central network unit, for receiving telecommunication signals for one or more subscribers via the optical fibre from the central network unit, characterized in that the enclosure further comprises, on the inside of the enclosure, b) transceiving means, which is operable to generate first optical signals using electrical energy, which is operable to receive optical response signals from the central network unit, which is optically connectable to the optical fibre such that the first optical signals can be transmitted by the optical fibre to the central network unit, and such that optical response signals can be transmitted by the optical fibre from the central network unit to the transceiving means.
Abstract:
An article comprises an optical fiber having a first end with a first end surface having a deposited coating only on a portion thereon. The first end can have a frustoconic or tronconic shape. The optical fiber can be utilized as a stub fiber in an optical device, such as an optical connector, receptacle or adapter. The deposited coating can be a wavelength selective multilayer thin film coating. The deposited coating can reflect a selected wavelength of light back to a central office to provide monitoring in a communication network, such as a PON.
Abstract:
Passive fibre-optic enclosure comprising, a) one or more fibre-optic functional units of a telecommunication network, optically connectable, via an optical fibre, with a central network unit, for receiving telecommunication signals for one or more subscribers via the optical fibre from the central network unit, characterized in that the enclosure further comprises, on the inside of the enclosure, b) transceiving means, which is operable to generate first optical signals using electrical energy, which is operable to receive optical response signals from the central network unit, which is optically connectable to the optical fibre such that the first optical signals can be transmitted by the optical fibre to the central network unit, and such that optical response signals can be transmitted by the optical fibre from the central network unit to the transceiving means.
Abstract:
Fibre network for interrogating fibre-optic sensors in a first Passive Optical Network (PON) and in a second PON, the fibre network comprising a test signal transceiver for emitting query signals and for receiving response signals, a first PON and a second PON. Each PON comprises a light source for generating telecommunication signals and a fibre-optic sensor. Each PON can transmit the telecommunication signals to a plurality of subscribers, and is optically connected to the test signal transceiver such that the query signals can be fed into the respective PON and propagate in the PON to the fibre-optic sensor, and such that the test signal transceiver can receive response signals from the fibre-optic sensor through the PON. The fibre network further comprises a query signal splitter, optically connected to the test signal transceiver and to the PONs such that it can feed a query signal into the PONs simultaneously, and such that it can feed response signals from the PONs into the test signal transceiver.