Abstract:
Spring-loaded contacts having an improved reliability. One example may provide spring-loaded contacts having a reduced likelihood of entanglement between a spring and a plunger. For example, a piston may be placed between a plunger and a spring. The piston may have a head portion that is wider than the diameter of the spring and located between the spring and the plunger to isolate the spring and the plunger. In these and other examples, an additional object, such as a sphere, may be placed between the plunger and spring. In another example, two additional objects, such as two spheres, may be placed between a plunger and piston.
Abstract:
An electrical plug and receptacle relying on magnetic force from an electromagnet to maintain contact are disclosed. The plug and receptacle can be used as part of a power adapter for connecting an electronic device, such as a laptop computer, to a power supply. The plug includes electrical contacts, which are preferably biased toward corresponding contacts on the receptacle. The plug and receptacle each have a magnetic element. The magnetic element on one of the plug or receptacle can be a magnet or ferromagnetic material. The magnetic element on the other of the plug or receptacle is an electromagnet. When the plug and receptacle are brought into proximity, the magnetic attraction between the electromagnet magnet and its complement, whether another magnet or a ferromagnetic material, maintains the contacts in an electrically conductive relationship.
Abstract:
Spring-loaded contacts having an improved reliability. One example may provide spring-loaded contacts having a reduced likelihood of entanglement between a spring and a plunger. For example, a piston may be placed between a plunger and a spring. The piston may have a head portion that is wider than the diameter of the spring and located between the spring and the plunger to isolate the spring and the plunger. In these and other examples, an additional object, such as a sphere, may be placed between the plunger and spring. In another example, two additional objects, such as two spheres, may be placed between a plunger and piston.
Abstract:
A magnetic connector system having a durable and reliable construction and a reduced height while maintaining sufficient holding strength. A connector insert may utilize a crimping piece to crimp a braiding of a cable. The crimping piece may be fixed to an attraction plate and a board in the insert for mechanical reliability. Retention clips may be used to fix a shell to the attraction plate. A connector receptacle may employ a magnetically conductive label to improve holding strength.
Abstract:
A spring-loaded contact may include a barrel to form a housing for the spring-loaded contact, a plunger at least partially enclosed by the barrel, a spring enclosed by the barrel, and a sphere between the plunger and the spring. A back of the plunger may be formed at an angle and to include a retention guide, the retention guide partly over the sphere such that the sphere may be in contact with the back of the plunger and the retention guide.
Abstract:
A spring-loaded contact may include a barrel to form a housing for the spring-loaded contact, a plunger at least partially enclosed by the barrel, a spring enclosed by the barrel, and a sphere between the plunger and the spring. A back of the plunger may be formed at an angle and to include a retention guide, the retention guide partly over the sphere such that the sphere may be in contact with the back of the plunger and the retention guide.
Abstract:
A magnetic connector system having a durable and reliable construction and a reduced height while maintaining sufficient holding strength. A connector insert may utilize a crimping piece to crimp a braiding of a cable. The crimping piece may be fixed to an attraction plate and a board in the insert for mechanical reliability. Retention clips may be used to fix a shell to the attraction plate. A connector receptacle may employ a magnetically conductive label to improve holding strength.
Abstract:
An electrical plug and receptacle relying on magnetic force from an electromagnet to maintain contact are disclosed. The plug and receptacle can be used as part of a power adapter for connecting an electronic device, such as a laptop computer, to a power supply. The plug includes electrical contacts, which are preferably biased toward corresponding contacts on the receptacle. The plug and receptacle each have a magnetic element. The magnetic element on one of the plug or receptacle can be a magnet or ferromagnetic material. The magnetic element on the other of the plug or receptacle is an electromagnet. When the plug and receptacle are brought into proximity, the magnetic attraction between the electromagnet magnet and its complement, whether another magnet or a ferromagnetic material, maintains the contacts in an electrically conductive relationship.
Abstract:
A spring-loaded contact may include a barrel to form a housing for the spring-loaded contact, a plunger at least partially enclosed by the barrel, a spring enclosed by the barrel, and a sphere between the plunger and the spring. A back of the plunger may be formed at an angle and to include a retention guide, the retention guide partly over the sphere such that the sphere may be in contact with the back of the plunger and the retention guide.
Abstract:
A method is provided for fabricating a composite panel with a surface finish. The method includes securing a polymer film within a first portion of a mold and securing a composite panel within a second portion of the mold. The method also includes holding the first portion of the mold against the second portion of the mold to form a mold cavity between composite panel and the polymer film. The method further includes heating the mold to an elevated temperature, injecting a polymer resin into the mold cavity, and curing the polymer resin to form an integrated structure having a polymer resin layer between the composite panel and the polymer film.