Abstract:
Some embodiments of the invention provide a novel prediction engine that (1) can formulate predictions about current or future destinations and/or routes to such destinations for a user, and (2) can relay information to the user about these predictions. In some embodiments, this engine includes a machine-learning engine that facilitates the formulation of predicted future destinations and/or future routes to destinations based on stored, user-specific data. The user-specific data is different in different embodiments. In some embodiments, the stored, user-specific data includes data about any combination of the following: (1) previous destinations traveled to by the user, (2) previous routes taken by the user, (3) locations of calendared events in the user's calendar, (4) locations of events for which the user has electronic tickets, and (5) addresses parsed from recent e-mails and/or messages sent to the user. In some embodiments, the prediction engine only relies on user-specific data stored on the device on which this engine executes. Alternatively, in other embodiments, it relies only on user-specific data stored outside of the device by external devices/servers. In still other embodiments, the prediction engine relies on user-specific data stored both by the device and by other devices/servers.
Abstract:
Apps may be tagged with location data when they are used. Mobile device may anonymously submit app usage data. Aggregated app usage data from many mobile devices may be analyzed to determine apps that are particularly relevant to a given location (i.e., exhibiting a high degree of localization). Analysis may include determining the app usage intensity, whether hotspots exist or not at a given location, the spatial entropy of a particular app, the device populations in a particular area, etc. Based on the localized app analysis, apps may be ranked according to local relevance, and, based on this ranking, app recommendations may be provided to a user.
Abstract:
Applications may be tagged with location data when they are used. Mobile device may anonymously submit application usage data. Aggregated application usage data from many mobile devices may be analyzed to determine applications that are particularly relevant to a given location (i.e., exhibiting a high degree of localization). Analysis may include determining the application usage intensity, whether hotspots exist or not at a given location, the spatial entropy of a particular application, the device populations in a particular area, etc. Based on the localized application analysis, applications may be ranked according to local relevance, and, based on this ranking, application recommendations may be provided to a user.
Abstract:
Apps may be tagged with location data when they are used. Mobile device may anonymously submit app usage data. Aggregated app usage data from many mobile devices may be analyzed to determine apps that are particularly relevant to a given location (i.e., exhibiting a high degree of localization). Analysis may include determining the app usage intensity, whether hotspots exist or not at a given location, the spatial entropy of a particular app, the device populations in a particular area, etc. Based on the localized app analysis, apps may be ranked according to local relevance, and, based on this ranking, app recommendations may be provided to a user.
Abstract:
A mobile device with a route prediction engine is provided that can predict current/future destinations or routes to destinations for the user, and can relay prediction information to the user. The engine includes a machine-learning engine that facilitates the formulation of predicted future destinations and/or future routes to destinations based on user-specific data. The user-specific data includes data about (1) previous destinations traveled, (2) previous routes taken, (3) locations of calendared events, (4) locations of events for which the user has electronic tickets, and/or (5) addresses parsed from e-mails and/or messages. The prediction engine relies on one or more of user-specific data stored on the device and data stored outside of the device by external devices/servers.
Abstract:
Applications may be tagged with location data when they are used. Mobile device may anonymously submit application usage data. Aggregated application usage data from many mobile devices may be analyzed to determine applications that are particularly relevant to a given location (i.e., exhibiting a high degree of localization). Analysis may include determining the application usage intensity, whether hotspots exist or not at a given location, the spatial entropy of a particular application, the device populations in a particular area, etc. Based on the localized application analysis, applications may be ranked according to local relevance, and, based on this ranking, application recommendations may be provided to a user.
Abstract:
Some embodiments of the invention provide a mobile device with a novel route prediction engine that (1) can formulate predictions about current or future destinations and/or routes to such destinations for the device's user, and (2) can relay information to the user about these predictions. In some embodiments, this engine includes a machine-learning engine that facilitates the formulation of predicted future destinations and/or future routes to destinations based on stored, user-specific data. The user-specific data is different in different embodiments. In some embodiments, the stored, user-specific data includes data about any combination of the following (1) previous destinations traveled to by the user, (2) previous routes taken by the user, (3) locations of calendared events in the user's calendar, (4) locations of events for which the user has electronic tickets, and (5) addresses parsed from recent e-mails and/or messages sent to the user. The device's prediction engine only relies on user-specific data stored on the device in some embodiments, relies only on user-specific data stored outside of the device by external devices/servers in other embodiments, and relies on user-specific data stored both by the device and by other devices/servers in other embodiments.
Abstract:
Some embodiments of the invention provide a novel prediction engine that (1) can formulate predictions about current or future destinations and/or routes to such destinations for a user, and (2) can relay information to the user about these predictions. In some embodiments, this engine includes a machine-learning engine that facilitates the formulation of predicted future destinations and/or future routes to destinations based on stored, user-specific data. The user-specific data is different in different embodiments. In some embodiments, the stored, user-specific data includes data about any combination of the following: (1) previous destinations traveled to by the user, (2) previous routes taken by the user, (3) locations of calendared events in the user's calendar, (4) locations of events for which the user has electronic tickets, and (5) addresses parsed from recent e-mails and/or messages sent to the user. In some embodiments, the prediction engine only relies on user-specific data stored on the device on which this engine executes. Alternatively, in other embodiments, it relies only on user-specific data stored outside of the device by external devices/servers. In still other embodiments, the prediction engine relies on user-specific data stored both by the device and by other devices/servers.
Abstract:
A mobile device with a route prediction engine is provided that can predict current/future destinations or routes to destinations for the user, and can relay prediction information to the user. The engine includes a machine-learning engine that facilitates the formulation of predicted future destinations and/or future routes to destinations based on user-specific data. The user-specific data includes data about (1) previous destinations traveled, (2) previous routes taken, (3) locations of calendared events, (4) locations of events for which the user has electronic tickets, and/or (5) addresses parsed from e-mails and/or messages. The prediction engine relies on one or more of user-specific data stored on the device and data stored outside of the device by external devices/servers.
Abstract:
Some embodiments of the invention provide a mobile device with a novel route prediction engine that (1) can formulate predictions about current or future destinations and/or routes to such destinations for the device's user, and (2) can relay information to the user about these predictions. In some embodiments, this engine includes a machine-learning engine that facilitates the formulation of predicted future destinations and/or future routes to destinations based on stored, user-specific data. The user-specific data is different in different embodiments. In some embodiments, the stored, user-specific data includes data about any combination of the following (1) previous destinations traveled to by the user, (2) previous routes taken by the user, (3) locations of calendared events in the user's calendar, (4) locations of events for which the user has electronic tickets, and (5) addresses parsed from recent e-mails and/or messages sent to the user. The device's prediction engine only relies on user-specific data stored on the device in some embodiments, relies only on user-specific data stored outside of the device by external devices/servers in other embodiments, and relies on user-specific data stored both by the device and by other devices/servers in other embodiments.