Abstract:
Methods and apparatus for a synchronized multi-directional transfer on an inter-processor communication (IPC) link. In one embodiment, the synchronized multi-directional transfer utilizes one or more buffers which are configured to accumulate data during a first state. The one or more buffers are further configured to transfer the accumulated data during a second state. Data is accumulated during a low power state where one or more processors are inactive, and the data transfer occurs during an operational state where the processors are active. Additionally, in some variants, the data transfer may be performed for currently available transfer resources, and halted until additional transfer resources are made available. In still other variants, one or more of the independently operable processors may execute traffic monitoring processes so as to optimize data throughput of the IPC link.
Abstract:
Methods and apparatus for data aggregation and multiplexing of one or more virtual bus interfaces via a physical bus interface. Various disclosed embodiments are configured to: (i) multiplex multiple logical interfaces over a single physical interface, (ii) exchange session management and logical interface control, (iii) manage flow control, (iv) provide “hints” about the data (e.g., metadata), and/or (v) pad data packets. In one particular implementation, the methods and apparatus are configured for use within a wireless-enabled portable electronic device, such as for example a cellular-enabled smartphone, and make use of one or more features of a high-speed serialized physical bus interface.
Abstract:
Methods and apparatus for a synchronized multi-directional transfer on an inter-processor communication (IPC) link. In one embodiment, the synchronized multi-directional transfer utilizes one or more buffers which are configured to accumulate data during a first state. The one or more buffers are further configured to transfer the accumulated data during a second state. Data is accumulated during a low power state where one or more processors are inactive, and the data transfer occurs during an operational state where the processors are active. Additionally, in some variants, the data transfer may be performed for currently available transfer resources, and halted until additional transfer resources are made available. In still other variants, one or more of the independently operable processors may execute traffic monitoring processes so as to optimize data throughput of the IPC link.
Abstract:
Methods and apparatus for data aggregation and multiplexing of one or more virtual bus interfaces via a physical bus interface. Various disclosed embodiments are configured to: (i) multiplex multiple logical interfaces over a single physical interface, (ii) exchange session management and logical interface control, (iii) manage flow control, (iv) provide “hints” about the data (e.g., metadata), and/or (v) pad data packets. In one particular implementation, the methods and apparatus are configured for use within a wirless-enabled portable electronic device, such as for example a cellular-enabled smartphone, and make use of one or more features of a high-speed serialized physical bus interface.
Abstract:
Methods and apparatus for a synchronized multi-directional transfer on an inter-processor communication (IPC) link. In one embodiment, the synchronized multi-directional transfer utilizes one or more buffers which are configured to accumulate data during a first state. The one or more buffers are further configured to transfer the accumulated data during a second state. Data is accumulated during a low power state where one or more processors are inactive, and the data transfer occurs during an operational state where the processors are active. Additionally, in some variants, the data transfer may be performed for currently available transfer resources, and halted until additional transfer resources are made available. In still other variants, one or more of the independently operable processors may execute traffic monitoring processes so as to optimize data throughput of the IPC link.
Abstract:
Methods and apparatus for a synchronized multi-directional transfer on an inter-processor communication (IPC) link. In one embodiment, the synchronized multi-directional transfer utilizes one or more buffers which are configured to accumulate data during a first state. The one or more buffers are further configured to transfer the accumulated data during a second state. Data is accumulated during a low power state where one or more processors are inactive, and the data transfer occurs during an operational state where the processors are active. Additionally, in some variants, the data transfer may be performed for currently available transfer resources, and halted until additional transfer resources are made available. In still other variants, one or more of the independently operable processors may execute traffic monitoring processes so as to optimize data throughput of the IPC link.
Abstract:
Methods and apparatus for a synchronized multi-directional transfer on an inter-processor communication (IPC) link. In one embodiment, the synchronized multi-directional transfer utilizes one or more buffers which are configured to accumulate data during a first state. The one or more buffers are further configured to transfer the accumulated data during a second state. Data is accumulated during a low power state where one or more processors are inactive, and the data transfer occurs during an operational state where the processors are active. Additionally, in some variants, the data transfer may be performed for currently available transfer resources, and halted until additional transfer resources are made available. In still other variants, one or more of the independently operable processors may execute traffic monitoring processes so as to optimize data throughput of the IPC link.
Abstract:
Methods and apparatus for a synchronized multi-directional transfer on an inter-processor communication (IPC) link. In one embodiment, the synchronized multi-directional transfer utilizes one or more buffers which are configured to accumulate data during a first state. The one or more buffers are further configured to transfer the accumulated data during a second state. Data is accumulated during a low power state where one or more processors are inactive, and the data transfer occurs during an operational state where the processors are active. Additionally, in some variants, the data transfer may be performed for currently available transfer resources, and halted until additional transfer resources are made available. In still other variants, one or more of the independently operable processors may execute traffic monitoring processes so as to optimize data throughput of the IPC link.
Abstract:
Methods and apparatus for data aggregation and multiplexing of one or more virtual bus interfaces via a physical bus interface. Various disclosed embodiments are configured to: (i) multiplex multiple logical interfaces over a single physical interface, (ii) exchange session management and logical interface control, (iii) manage flow control, (iv) provide “hints” about the data (e.g., metadata), and/or (v) pad data packets. In one particular implementation, the methods and apparatus are configured for use within a wireless-enabled portable electronic device, such as for example a cellular-enabled smartphone, and make use of one or more features of a high-speed serialized physical bus interface.
Abstract:
Methods and apparatus for data aggregation and multiplexing of one or more virtual bus interfaces via a physical bus interface. Various disclosed embodiments are configured to: (i) multiplex multiple logical interfaces over a single physical interface, (ii) exchange session management and logical interface control, (iii) manage flow control, (iv) provide “hints” about the data (e.g., metadata), and/or (v) pad data packets. In one particular implementation, the methods and apparatus are configured for use within a wireless-enabled portable electronic device, such as for example a cellular-enabled smartphone, and make use of one or more features of a high-speed serialized physical bus interface.