Abstract:
Methods and apparatus for enabling a peripheral processor to retrieve and load firmware for execution within the constraints of its memory. The peripheral processor is allocated a portion of the host processor's memory, to function as a logical secondary and tertiary memory for memory cache operation. The described embodiments enable the peripheral processor to support much larger and more complex firmware. Additionally, a multi-facetted locking mechanism is described which enables the peripheral processor and the host processor to access the secondary memory, while minimally impacting the other processor.
Abstract:
Methods and apparatus for a synchronized multi-directional transfer on an inter-processor communication (IPC) link. In one embodiment, the synchronized multi-directional transfer utilizes one or more buffers which are configured to accumulate data during a first state. The one or more buffers are further configured to transfer the accumulated data during a second state. Data is accumulated during a low power state where one or more processors are inactive, and the data transfer occurs during an operational state where the processors are active. Additionally, in some variants, the data transfer may be performed for currently available transfer resources, and halted until additional transfer resources are made available. In still other variants, one or more of the independently operable processors may execute traffic monitoring processes so as to optimize data throughput of the IPC link.
Abstract:
Methods and apparatus for an inter-processor communication (IPC) link between two (or more) independently operable processors. In one aspect, the IPC protocol is based on a “shared” memory interface for run-time processing (i.e., the independently operable processors each share (either virtually or physically) a common memory interface). In another aspect, the IPC communication link is configured to support a host driven boot protocol used during a boot sequence to establish a basic communication path between the peripheral and the host processors. Various other embodiments described herein include sleep procedures (as defined separately for the host and peripheral processors), and error handling.
Abstract:
Methods and apparatus for enabling a peripheral processor to retrieve and load firmware for execution within the constraints of its memory. The peripheral processor is allocated a portion of the host processor's memory, to function as a logical secondary and tertiary memory for memory cache operation. The described embodiments enable the peripheral processor to support much larger and more complex firmware. Additionally, a multi-facetted locking mechanism is described which enables the peripheral processor and the host processor to access the secondary memory, while minimally impacting the other processor.
Abstract:
Methods and apparatus for controlled recovery of error information between two (or more) independently operable processors. The present disclosure provides solutions that preserve error information in the event of a fatal error, coordinate reset conditions between independently operable processors, and implement consistent frameworks for error information recovery across a range of potential fatal errors. In one exemplary embodiment, an applications processor (AP) and baseband processor (BB) implement an abort handler and power down handler sequence which enables error recovery over a wide range of crash scenarios. In one variant, assertion of signals between the AP and the BB enables the AP to reset the BB only after error recovery procedures have successfully completed.
Abstract:
Methods and apparatus for a synchronized multi-directional transfer on an inter-processor communication (IPC) link. In one embodiment, the synchronized multi-directional transfer utilizes one or more buffers which are configured to accumulate data during a first state. The one or more buffers are further configured to transfer the accumulated data during a second state. Data is accumulated during a low power state where one or more processors are inactive, and the data transfer occurs during an operational state where the processors are active. Additionally, in some variants, the data transfer may be performed for currently available transfer resources, and halted until additional transfer resources are made available. In still other variants, one or more of the independently operable processors may execute traffic monitoring processes so as to optimize data throughput of the IPC link.
Abstract:
Methods and apparatus for an inter-processor communication (IPC) link between two (or more) independently operable processors. In one aspect, the IPC protocol is based on a “shared” memory interface for run-time processing (i.e., the independently operable processors each share (either virtually or physically) a common memory interface). In another aspect, the IPC communication link is configured to support a host driven boot protocol used during a boot sequence to establish a basic communication path between the peripheral and the host processors. Various other embodiments described herein include sleep procedures (as defined separately for the host and peripheral processors), and error handling.
Abstract:
Methods and apparatus for a synchronized multi-directional transfer on an inter-processor communication (IPC) link. In one embodiment, the synchronized multi-directional transfer utilizes one or more buffers which are configured to accumulate data during a first state. The one or more buffers are further configured to transfer the accumulated data during a second state. Data is accumulated during a low power state where one or more processors are inactive, and the data transfer occurs during an operational state where the processors are active. Additionally, in some variants, the data transfer may be performed for currently available transfer resources, and halted until additional transfer resources are made available. In still other variants, one or more of the independently operable processors may execute traffic monitoring processes so as to optimize data throughput of the IPC link.
Abstract:
Methods and apparatus for data transmissions over an inter-processor communication (IPC) link between two (or more) independently operable processors. In one embodiment, the IPC link is configured to enable an independently operable processor to transact data to another independently operable processor, while obviating transactions (such as via direct memory access) by encapsulating a payload within a data structure. For example, a host processor may insert the payload into a transfer descriptor (TD), and transmit the TD to a peripheral processor. The host processor may also include a head index and/or a tail index within a doorbell message sent to the peripheral processor, obviating another access of memory. The peripheral processor may perform similar types of transactions via a completion descriptor (CD) sent to the host processor. In some variants, the peripheral may be a Bluetooth-enabled device optimized for low-latency, low-power, and/or low-throughput transactions.
Abstract:
Methods and apparatus for an inter-processor communication (IPC) link between two (or more) independently operable processors. In one aspect, the IPC protocol is based on a “shared” memory interface for run-time processing (i.e., the independently operable processors each share (either virtually or physically) a common memory interface). In another aspect, the IPC communication link is configured to support a host driven boot protocol used during a boot sequence to establish a basic communication path between the peripheral and the host processors. Various other embodiments described herein include sleep procedures (as defined separately for the host and peripheral processors), and error handling.