Abstract:
A resonant clock network includes an inductor coupled to the clock network through a plurality of switches. When the clock network enters resonant mode, the turn-on of the switches to couple the inductor to the clock network is staggered. The clock network may be formed of multiple regions, each with its own inductor and switches. The turn-on of switches of each region may be staggered with respect to the turn-on off the switches of the other regions as well as to the turn-on of switches within a region. In addition to staggering the turn-on of the switches when entering the resonant mode, the switches may be turned off in a staggered manner when exiting the resonant mode of operation.
Abstract:
Described herein are methods and processors for flag renaming in groups to eliminate dependencies of instructions. Decoder and execution units in the processor may be configured to rename flags into groups that allow each group to be treated separately as appropriate. This flag renaming eliminates flag dependencies with respect to instructions. This allows an instruction to write exactly the flags that the instruction wants without having to create merge dependencies. Methods and processors are provided for handling immediate values embedded in instructions. A 16 bit immediate bus and a 4 bit encoding/control bus are added at the interface between decode and execution units. For an 8 or 12 bit immediate, the upper 4 bits of the immediate bus contain the encoding bits. For a 16 bit immediate, the encoding/control bus contains the encoding bits. The encoding/control bus indicates when to look at the top four bits of the immediate bus.
Abstract:
A processor includes an execution unit to execute instructions and a scheduler unit to store a queue of instructions for execution by the execution unit. The scheduler unit includes a wake array including a plurality of source slots to store source identifiers for sources associated with the instructions, a picker to schedule a particular instruction for execution in the execution unit, broadcast a destination identifier associated with the particular instruction to a first subset of the source slots, and a delay element to receive the destination identifier broadcast by the picker and communicate a delayed version of the destination identifier to a second subset of the source slots different from the first subset.
Abstract:
A processor in a data processing system includes a master-shadow physical register file and a renaming unit. The master-shadow physical register file has a master storage coupled to shadow storage. The renaming unit is coupled to the master-shadow physical register file. Based on an occurrence of shadow transfer activation conditions verified by the renaming unit, data in the master storage is transferred from the master storage to the shadow storage for storage. Data is transferred from the shadow storage back to the master storage based on the occurrence of a shadow-to-master transfer event, which includes, for example, a flush of the master storage by the processor.
Abstract:
A processor includes an execution unit to execute instructions and a scheduler unit to store a queue of instructions for execution by the execution unit. The scheduler unit includes a wake array including a plurality of source slots to store source identifiers for sources associated with the instructions, a picker to schedule a particular instruction for execution in the execution unit, broadcast a destination identifier associated with the particular instruction to a first subset of the source slots, and a delay element to receive the destination identifier broadcast by the picker and communicate a delayed version of the destination identifier to a second subset of the source slots different from the first subset.
Abstract:
A resonant clock network includes an inductor coupled to the clock network through a plurality of switches. When the clock network enters resonant mode, the turn-on of the switches to couple the inductor to the clock network is staggered. The clock network may be formed of multiple regions, each with its own inductor and switches. The turn-on of switches of each region may be staggered with respect to the turn-on off the switches of the other regions as well as to the turn-on of switches within a region. In addition to staggering the turn-on of the switches when entering the resonant mode, the switches may be turned off in a staggered manner when exiting the resonant mode of operation.