摘要:
The specification describes ceram-glass compositions useful for electro-optic devices. The compositions have active ferroelectric ingredients in a tellurium oxide host. Proper processing of the ceram-glass produces highly transparent material with desirable ferroelectric properties. The ceram-glass materials can be used for electro-optic devices in both bulk and thin film applications.
摘要:
A method is provided of trimming the optical coupling ratio of an optical coupler to a prescribed value. The optical coupler is formed from a plurality of waveguides which each include a core and cladding. In accordance with the method, an irradiation energy is selected that is absorbed by portions of the waveguides located in a coupling region. A dosage of radiation is applied to the waveguide portions at least sufficient to adjust the optical coupling ratio to the prescribed value. The radiation, which may be absorbed by the cladding and/or the core of the waveguides, causes a change in the refractive index difference between the core and cladding of the waveguides. This change in the refractive index difference will result in a change in the optical coupling ratio of the device.
摘要:
In accordance with the invention glass waveguide devices are provided with enhanced temperature stability by incorporating within appropriate lengths of the waveguides a transparent compensating material having a refractive index variation with temperature that differs substantially from that of the waveguide. The compensating material can be a non-glass material, such as a liquid, driven into the glass by heat and pressure. In a preferred embodiment, D.sub.2 O is incorporated into waveguides for optical communications. The D.sub.2 O is transparent to the preferred communications wavelengths centered at about 1.55 .mu.m and has a dn/dT opposite in polarity to the dn/dT of glass. The resulting structure exhibits enhanced temperature stability with reduced magnitude of dn/dT. The technique is particularly useful in devices based on interference between multiple waveguides, as it is not necessary to reduce dn/dT to zero in the respective waveguides. It suffices to compensate the differences. Such compensation can be achieved by compensating materials having dn/dT of either the same polarity as the dn/dT of the waveguides or the opposite polarity. Preferred embodiments include routers, Fourier filters and Bragg filters. In single waveguide devices such as gratings, compensating materials of opposite polarity can substantially enhance the temperature stability.