Abstract:
A method of making a silicate optical waveguide structure for transforming an optical beam of a first modal spot size to a beam of a second modal spot size includes the step of selecting an irradiation energy which is at least partially absorbed by the cladding of the structure. A variable dosage of radiation is then provided along the length of the structure. The radiation has an energy equal to the selected irradiation energy so that a refractive index change of the cladding is greater than a refractive index change of the core.
Abstract:
An optical-fiber filter system to narrow a linewidth and to reduce noise fluctuations of an optical beam is provided. The optical-fiber filter system includes an optical fiber having a first end-face and an opposing second end-face, the first end-face and the second end-face setting a fiber length; a fiber Bragg grating having a first reflectivity positioned at the first end-face; and a reflector having a second reflectivity positioned at the second end-face. When the optical beam at a first frequency is coupled from a laser into one of the first end-face or the second end-face, a resonant cavity is established at the first frequency between the fiber Bragg grating and the reflector while Brillouin scattered light shifted from the first frequency within the optical fiber is transmitted through the fiber Bragg grating.
Abstract:
An optical-fiber filter system to narrow a linewidth and to reduce noise fluctuations of an optical beam is provided. The optical-fiber filter system includes an optical fiber having a first end-face and an opposing second end-face, the first end-face and the second end-face setting a fiber length; a fiber Bragg grating having a first reflectivity positioned at the first end-face; and a reflector having a second reflectivity positioned at the second end-face. When the optical beam at a first frequency is coupled from a laser into one of the first end-face or the second end-face, a resonant cavity is established at the first frequency between the fiber Bragg grating and the reflector while Brillouin scattered light shifted from the first frequency within the optical fiber is transmitted through the fiber Bragg grating.
Abstract:
Effective relative intensity noise (RIN) subtraction systems and methods for improving ARW performance of a depolarized gyros. This invention taps the RIN detector light in the sensing loop, after the light transmits through the depolarizer and the coil but before it combines with the counter propagating lightwave. The tapped RIN lightwaves are polarized with pass-axis orientated in the same direction as that of the IOC, so that the RIN detector receives lightwaves with spectrum substantially identical to that of the rate detector, leading to more effective RIN subtraction.
Abstract:
Transmission characteristics of an optical device 200, fabricated from multiple layers 16, 27, 28 of silica-based glass on a silicon substrate 26, are modified by localized thermal treatment. The beam 501 of a carbon-dioxide (CO2) laser 510 is used to selectively soften the core and/or cladding material of a waveguide structure during or after the fabrication process. In one application, softening relieves the strain developed between the waveguide structure and the silicon substrate and substantially reduces or eliminates birefringence. In a second application, the CO2 laser is operated at another power level in order to modify the index of refraction. Changes in the index of refraction change the speed of light through a waveguide thereby changing the phase shift associated with the waveguide. In a third application, the CO2 laser is operated at yet another power level to increase the transmission loss of the waveguide. In all of the embodiments, heat treatment is substantially faster and/or less expensive than known techniques for modifying the transmission characteristics of an optical device.
Abstract:
A method for preparing operative end faces of integrated circuit chips or dies utilizes a beveled cutting blade to impart a desired contact angle to the operative end faces of the chip. The method includes the steps of mounting feet on the chip, trimming the feet where necessary, mounting the chip on a fixture with tape, cutting the end faces, and removing the chip from the fixture.
Abstract:
An optical planar waveguide notch filter employs a waveguide with first, second and third regions. The first and third regions have structures for propagating an optical signal in a first transmission mode. The second region is located between the first and third regions and has a structure in which an optical signal propagates in the first transmission mode as well as at least one other higher order transmission mode. The structure of the second region further couples a particular wavelength band of the signal propagating in the first transmission mode to at least one of the other transmission modes. This coupling causes an attenuation of energy of such bandwidth in the signal propagating in the first transmission mode. As a result, the signal propagating from the second region to the third region in the first transmission mode is a notch filtered signal possessing an attenuation at the particular wavelength band.
Abstract:
In many assembly applications of optical arrays, a bridging member is bonded to the arrays to hold them securely. It has been found that a pad made of layers of glass and silicon provides an efficient heat transmitting structure for this purpose. Because glass is absorbent to laser radiation at 10.6 .mu.m, it absorbs all the incident laser radiation, and imparts the heat generated to the silicon, which transmits it uniformly over its entire surface. The heat can then be used to melt solder or to heat-cure an adhesive, thereby affecting a robust mechanical bond in an efficient and rapid manner.
Abstract:
Apparatus and method are provided for chemical and biological agent sensing. The sensing apparatus includes a resonator having a resonance frequency and one or more optical fiber coils. The optical fiber coil has a permeable cladding and an indicator embedded in the cladding that reacts to an agent (e.g., a chemical or biological substance). The resonator circulates light through the coil and produces a resonance shape centered at the resonance frequency and measured via the input light. A predetermined change in the resonance shape indicates a presence of the agent in the environment.
Abstract:
Disclosed is an apparatus for testing an array of optical fibers. According to the invention, modulated light is projected through individual fibers of a fiber array onto a photo-sensitive position sensor. The photo-sensitive sensor will provide position information relative to the position of the light projected upon its surface to a system computer. The positions of the optical fibers within the array relative to each other may thus be found. A loop is introduced into the optical fibers to lower the wavelength at which the fiber is multi-moded. The actual positions of the optical fibers are compared to desired positions and the fiber array is accepted or rejected based on whether it meets predetermined limits.