Abstract:
A method and system to increase the throughput of a HARQ protocol in a wireless network. When a station receives a downlink HARQ sub-burst that has an incorrect cyclic redundancy check, it determines if there is an overflow event of its buffer. If so, the station reduces the size of the HARQ sub-burst to be stored in the buffer and stores the resized HARQ sub-burst in the buffer. When the station transmits an uplink HARQ sub-burst, the station can reduce the size of the transmitted HARQ sub-burst if it exceeds the size of the buffer. The amount of buffer required in the station can also be reduced by representing each log likelihood ratio (LLR) value of each of one or more bits of each symbol of a HARQ burst with a number of quantization bits based on a metric sensitivity to noise of each bit of each symbol.
Abstract:
An apparatus may include a channel estimation component to determine a channel estimation matrix H for a tone of a multiplicity of tones in a multiple input multiple output (MIMO) communications signal. The apparatus may further include a processor circuit coupled to the receiver component, and a flow selection component for execution on the processor circuit to calculate a figure of merit for power loss for the received tone based upon the channel estimation matrix, and based upon the calculated figure of merit, perform either a max-log calculation or a maximum likelihood calculation to determine a received signal metric, but not both calculations. Other embodiments are described and claimed.
Abstract:
In processing a game scene for display, in one embodiment input controller position information from a host memory is provided directly to a graphics processor rather than first being processed by a 3D application in a host processor. This results in more direct and timely processing of position information and reduces the number of 3D processing pipeline steps the controller position information must pass through thus reducing the user's perceived latency between moving the input controller and seeing the displayed results. In another embodiment, the input controller position information is provided directly from an input controller to a graphics card or subsystem rather than first going through a host processor or memory. This results in even more direct and timely processing of position information by further reducing the number of 3D processing pipeline steps the controller position information must pass through thus further reducing the user's perceived latency.
Abstract:
In processing a game scene for display, in one embodiment input controller position information from a host memory is provided directly to a graphics processor rather than first being processed by a 3D application in a host processor. This results in more direct and timely processing of position information and reduces the number of 3D processing pipeline steps the controller position information must pass through thus reducing the user's perceived latency between moving the input controller and seeing the displayed results. In another embodiment, the input controller position information is provided directly from an input controller to a graphics card or subsystem rather than first going through a host processor or memory. This results in even more direct and timely processing of position information by further reducing the number of 3D processing pipeline steps the controller position information must pass through thus further reducing the user's perceived latency.
Abstract:
Separate active and passive controllers each detect a generated magnetic field. The active controller phase corrects the detected magnetic field information transmitted from the passive controller and uses that to calculate the position and orientation of the passive controller. The active controller also phase corrects its own detected magnetic field information and uses that to calculate its position and orientation. The active controller transmits each of these calculated positions and orientations to a video game system directly or indirectly through the source of the generated magnetic field. The video game system is thus informed of the position and orientation of each of the active and passive controllers. Alternatively, the active controller creates a signal matrix using the phase corrected information and the position and orientation of a controller is calculated by either the source of the generated magnetic field or the video game system using the signal matrix.
Abstract:
While scanning through various channels to find network controllers that are both within range and available, the scanning device may cover multiple channels simultaneously by using a bandwidth that encompasses multiple channels. This may be particularly useful with WiFi devices that are using the 2.4 GHz band, in which the channel spacing may be about 5 MHz, while the channel bandwidth may be about 22 MHz.
Abstract:
Apparatus and methods for selective decoding of received code blocks are disclosed. An example method includes receiving a code block, determining a code block quality indicator for the received code block, and attempting to decode the received code block if the code block quality indicator is greater than or equal to a threshold. If the code block quality indicator is less than the threshold, the received code block is discarded without decoding attempts. The threshold may be a static or dynamic threshold.
Abstract:
In some embodiments, the invention involves increasing hybrid automatic repeat request (HARQ) throughput. In one embodiment, throughput may be increased by clearing the retransmission buffer at least one frame in advance, based on status received from the downlink device before a full acknowledgement. Another embodiment partitions HARQ bursts into two groups. A first group is for packet data units (PDUs) that are anticipated to be in error and a second group is for PDUs anticipated to be received correctly. Only PDUs that are anticipated to be in error, based on forward error correction (FEC) blocks, are to be saved in the retransmission buffer. Other embodiments are described and claimed.
Abstract:
A method and system to increase the throughput of a HARQ protocol in a wireless network. When a station receives a downlink HARQ sub-burst that has an incorrect cyclic redundancy check, it determines if there is an overflow event of its buffer. If so, the station reduces the size of the HARQ sub-burst to be stored in the buffer and stores the resized HARQ sub-burst in the buffer. When the station transmits an uplink HARQ sub-burst, the station can reduce the size of the transmitted HARQ sub-burst if it exceeds the size of the buffer. The amount of buffer required in the station can also be reduced by representing each log likelihood ratio (LLR) value of each of one or more bits of each symbol of a HARQ burst with a number of quantization bits based on a metric sensitivity to noise of each bit of each symbol.
Abstract:
Some embodiments of the invention provide devices, systems and methods of noise identification and cancellation. For example, an apparatus in accordance with an embodiment of the invention includes: a characterizer to estimate a non-linear mutual relation between: a characteristic of an incoming interference signal, and an estimated portion of noise level in an incoming signal-of-interest caused by the incoming interference signal; and a noise canceller to reduce an effect of the interference signal on the signal-of-interest by applying a noise reduction algorithm based on said non-linear mutual relation.