摘要:
A framework and middleware services for developing, deploying and managing composite applications is disclosed. The middleware services may be deployed on-premises or in the cloud. The framework includes a rich collection of middleware services, an application model to compose services into a composite application, a high-density multi-tenant scalable container to host the composition logic, and unified lifecycle management of the composite application and its constituent services.
摘要:
A framework and middleware services for developing, deploying and managing composite applications is disclosed. The middleware services may be deployed on-premises or in the cloud. The framework includes a rich collection of middleware services, an application model to compose services into a composite application, a high-density multi-tenant scalable container to host the composition logic, and unified lifecycle management of the composite application and its constituent services.
摘要:
Systems and methods according to various embodiments disclose a worker process manager adapted to spawn one or more worker processes on a server and to load an application on each of the worker processes. The worker process manager is adapted to isolate the one or more worker processes from each other and to control resource usage by the worker processes. A resource manager is adapted to detect applications that overuse system resources. The worker process manager is adapted to isolate worker processes and to control resource usage using one or more of the following techniques: least-privilege execution, messaging isolation, credentials isolation, data isolation, network isolation, fair share resource usage, and managed runtime security. Heuristic algorithms are used to detect applications that frequently overuse system resources that are unchargeable and that cause system unresponsiveness.
摘要:
A container service is capable of hosting large numbers of middleware components for multiple tenants. A central container manager controls a plurality of compute nodes. The central container manager receives middleware components from external devices or services and assigns the components to containers on one or more designated compute nodes. Each compute node has a container management agent and one or more containers. The container management agents activate and manage the appropriate number of containers to run the assigned middleware components. The container management agent assigns each container on its compute node a limited set of privileges to control access to shared resources. The central container manager and each node's container management agent monitor container load levels and dynamically adjust the placement of the middleware components to maintain balanced operation. The compute nodes are grouped into clusters based upon the type of middleware components hosted on each compute node.
摘要:
Systems and methods according to various embodiments disclose a worker process manager adapted to spawn one or more worker processes on a server and to load an application on each of the worker processes. The worker process manager is adapted to isolate the one or more worker processes from each other and to control resource usage by the worker processes. A resource manager is adapted to detect applications that overuse system resources. The worker process manager is adapted to isolate worker processes and to control resource usage using one or more of the following techniques: least-privilege execution, messaging isolation, credentials isolation, data isolation, network isolation, fair share resource usage, and managed runtime security. Heuristic algorithms are used to detect applications that frequently overuse system resources that are unchargeable and that cause system unresponsiveness.
摘要:
A container service is capable of hosting large numbers of middleware components for multiple tenants. A central container manager controls a plurality of compute nodes. The central container manager receives middleware components from external devices or services and assigns the components to containers on one or more designated compute nodes. Each compute node has a container management agent and one or more containers. The container management agents activate and manage the appropriate number of containers to run the assigned middleware components. The container management agent assigns each container on its compute node a limited set of privileges to control access to shared resources. The central container manager and each node's container management agent monitor container load levels and dynamically adjust the placement of the middleware components to maintain balanced operation. The compute nodes are grouped into clusters based upon the type of middleware components hosted on each compute node.
摘要:
A distributed component model for creating a scalable and available distributed application is disclosed. The distributed component model provides for an application schema to be declaratively defined to include a module having a component. The schema includes a corresponding definition construct in a technology agnostic manner. The corresponding definition construct is declaratively defined to include metadata to control scaling and availability.
摘要:
A back-end locator service can be utilized to identify a specific computing device, from among multiple computing devices in a domain, that is the most appropriate computing device to handle a particular type of request for data or other resources. The data or resources hosted by the domain can be divided among multiple computing devices. The domain can expose a network-based application program interface where successive requests by a client computing device become more specific as to the data or resources requested. Responses from the computing devices in the domain can, at some point in time, be informed by the back-end locator service and can comprise location-specific resource identifiers. The client computing device can utilize such location specific resource identifiers to direct further communications to the appropriate, specific computing device without having to incur redirection inefficiencies.
摘要:
A computer user may use a computing environment comprising a set of computers that respectively feature a web browser having a browser cache containing many types of data objects, including application resources and user-generated data files. However, the contents of a browser cache significantly contribute to the computing environment of a computer, and the computing environments presented by each computer may diverge, providing an inconsistent computing environment. Instead, the contents of browser caches of the computers comprising the computing environment may be synchronized across computers. Additionally, the browser cache may be synchronized with the other data objects of a computing environment (such as relevant portions of the filesystem); the synchronizing may be implemented as an out-of-browser process executing independently of the applications, and even when the browser is not executing; and the synchronization may be exposed through a programmatic access with which web applications may interact.
摘要:
Data sets of various types may be accessible through a host according to a protocol, such as a RESTful HTTP interface. Various domains may involve domain-specific processes to be executed as pre-triggers or post-triggers of various protocol requests (e.g., an HTTP GET request specifying a Read operation on an access-restricted data set may involve an authorization operations set that verifies the access privileges of the requester.) A host of the data set may be configured to receive a resource script expressing the operations set in a script language, to store the resource script, and to associated it with at least one data set and at least one verb of the protocol. Upon later receiving a protocol request specifying the verb and the resource, the host may then execute the resource script (as a pre-trigger and/or as a post-trigger) in accordance with the business logic of the domain.