Abstract:
Described herein are computer-implemented methods, computer-readable media, and computer systems for the establishment of data communications between devices based through the use of acoustic signals. A first device transmits an acoustic signal, which is received by one or more other devices. The first device and the receiving devices establish a new communications network (e.g., create a new Wi-Fi network and/or peer-to-peer wireless network), or form/establish a grouping within a pre-existing communications network to which the devices are all connected. The devices can then exchange data over the new communications network or within the grouping on the pre-existing network. Also described herein are techniques for a device to determine its distance and/or other positioning information relative to another device, using acoustic and/or RF signaling.
Abstract:
A wireless power system may have a wireless power transmitting device and wireless power receiving devices. The wireless power transmitting device has wireless power transmitting circuitry with coils to transmit wireless power to wireless power receiving devices. The wireless power receiving devices are placed on the wireless power transmitting device in an order. Batteries in the wireless power receiving devices are charged based at least partly on the order. Power allocation is based on utilization factor information such as information on a power draw associated with each of the power receiving devices. Measurement circuitry in the wireless power transmitting device is used to gather impedance images from the coils. Changes in the impedance images are used to temporarily halt power transmission. Power transmission is resumed depending on whether in-band communications are lost or are maintained.
Abstract:
Aspects of the present disclosure involve projecting an interactive scene onto a surface from a projecting object. In one particular embodiment, the interactive scene is projected from a vehicle and may be utilized by the vehicle to provide a scene or image that a user may interact with through various gestures detected by the system. In addition, the interactive scene may be customized to one or more preferences determined by the system, such as user preferences, system preferences, or preferences obtained through feedback from similar systems. Based on one or more user inputs (such as user gestures received at the system), the projected scene may be altered or new scenes may be projected. In addition, control over some aspects of the vehicle (such as unlocking of doors, starting of the motor, etc.) may be controlled through the interactive scene and the detected gestures of the users.
Abstract:
Devices, methods and graphical user interfaces for manipulating user interfaces based on fingerprint sensor inputs are provided. While a display of an electronic device with a fingerprint sensor displays a first user interface, the device may detect movement of a fingerprint on the fingerprint sensor. In accordance with a determination that the movement of the fingerprint is in a first direction, the device allows navigating through the first user interface, and in accordance with a determination that the movement of the fingerprint is in a second direction different from the first direction, the device allows displaying a second user interface different from the first user interface on the display.
Abstract:
A wireless power transmitting device transmits wireless power signals to a wireless power receiving device. The wireless power receiving device has a rectifier and a wireless power receiving coil that receives wireless power signals. The wireless power transmitting device uses a layer of coils to transmit the wireless power signals. A dielectric layer in the wireless power transmitting device defines a charging surface that receives the wireless power receiving device. A layer of temperature sensors is interposed between the layer of coils and the dielectric layer. Control circuitry in the wireless power transmitting device uses temperature information from the temperature sensors to determine whether a foreign object such as a coin is present on the charging surface.
Abstract:
A wireless power transmitting device transmits wireless power signals to a wireless power receiving device. To detect foreign objects, the wireless power transmitting device has an array of temperature sensors. The array of temperature sensors may include temperature sensor components such as temperature sensitive thin-film resistors or other temperature sensitive components. A temperature sensor may have thin-film resistors formed on opposing sides of a substrate. The thin-film resistors may be formed from meandered metal traces to reduce eddy current formation during operation of the wireless power transmitting device. Signal paths coupling control circuitry on the wireless power transmitting device to the array of temperature sensors may be configured to extend along columns of the temperature sensors without running along each row of the temperature sensors, thereby reducing eddy currents from loops of signal routing lines. Some temperature sensors may have multiple components coupled to a common temperature sensing pad.
Abstract:
A wireless power transmitting device transmits wireless power signals to a wireless power receiving device. The wireless power receiving device has a rectifier and a wireless power receiving coil that receives wireless power signals. The wireless power transmitting device uses a layer of coils to transmit the wireless power signals. A dielectric layer in the wireless power transmitting device defines a charging surface that receives the wireless power receiving device. A layer of temperature sensors is interposed between the layer of coils and the dielectric layer. Control circuitry in the wireless power transmitting device uses temperature information from the temperature sensors to determine whether a foreign object such as a coin is present on the charging surface.
Abstract:
Devices, methods and graphical user interfaces for manipulating user interfaces based on fingerprint sensor inputs are provided. While a display of an electronic device with a fingerprint sensor displays a first user interface, the device may detect movement of a fingerprint on the fingerprint sensor. In accordance with a determination that the movement of the fingerprint is in a first direction, the device allows navigating through the first user interface, and in accordance with a determination that the movement of the fingerprint is in a second direction different from the first direction, the device allows displaying a second user interface different from the first user interface on the display.
Abstract:
Aspects of the present disclosure involve projecting an interactive scene onto a surface from a projecting object. In one particular embodiment, the interactive scene is projected from a vehicle and may be utilized by the vehicle to provide a scene or image that a user may interact with through various gestures detected by the system. In addition, the interactive scene may be customized to one or more preferences determined by the system, such as user preferences, system preferences, or preferences obtained through feedback from similar systems. Based on one or more user inputs (such as user gestures received at the system), the projected scene may be altered or new scenes may be projected. In addition, control over some aspects of the vehicle (such as unlocking of doors, starting of the motor, etc.) may be controlled through the interactive scene and the detected gestures of the users.
Abstract:
Devices, methods and graphical user interfaces for manipulating user interfaces based on fingerprint sensor inputs are provided. While a display of an electronic device with a fingerprint sensor displays a first user interface, the device may detect movement of a fingerprint on the fingerprint sensor. In accordance with a determination that the movement of the fingerprint is in a first direction, the device allows navigating through the first user interface, and in accordance with a determination that the movement of the fingerprint is in a second direction different from the first direction, the device allows displaying a second user interface different from the first user interface on the display.