Abstract:
Described is a storage unit for a drive system in a vehicle. The storage unit has at least one sorption store, at least one battery, and at least one cooling circuit. The sorption store is coupled via the cooling circuit to the battery. Further described is a method of operating the storage unit and also a drive system and a vehicle equipped with such a storage unit.
Abstract:
The present invention concerns a method and a device for feeding at least one chemical substance into a main process stream. The method of the invention comprises the steps of providing a concentrated stream of said chemical substance, mixing said concentrated stream with a diluent stream to provided a diluted stream of said chemical substance, injecting said diluted stream of said chemical substance into said main process stream, wherein said mixing of said concentrated stream with said diluent stream is effected by injecting a jet of either one of said concentrated stream or said diluent stream into the respective other stream. The device of the invention comprises a first pipe segment (21) having a first inlet (22) for a first fluid and a first outlet (23) for a mixed fluid, a second pipe segment (24) having a second inlet (25) for a second fluid and a second outlet (26) connected to and leading into said first pipe segment (21) between said first inlet (23) and said first outlet (24), and first connection means (27) for connecting said first outlet (23) of said first pipe section (21) to a main pipe (14) of said main process stream, wherein said second pipe segment (24) comprises at least one nozzle (28) for generating a jet (29) of said second fluid arranged upstream of said second outlet (26).
Abstract:
A visualisation system for visualising the processing of a chemical product uses at least two processing units. The visualisation system contains a communication interface, a profiling module, and a user interface. The communication interface is configured for communicating with the processing units to receive a respective value of processing parameters for processing the chemical product. The profiling module is configured for providing a reference profile including a respective reference value for processing parameters for a reference chemical product and for providing a profile for the chemical product. The profile includes a respective deviation value of processing parameters for the chemical product determined based on a difference between the respective value of the processing parameters for processing the chemical product and the respective reference value. The user interface is configured for visualising information about processing the chemical product including the profile in a mixed reality view or a virtual reality view.
Abstract:
The present teachings relate to a method for monitoring a production process for manufacturing a chemical product at an industrial plant, the method comprising: providing an up-stream object identifier comprising input material data, receiving real-time process data from one or more of the equipment zones; determining a subset of the real-time process data based on the upstream object identifier and a zone presence signal; computing at least one zone-specific performance parameter of the chemical product related to the up-stream object identifier based on the subset of the real-time process data and historical data; appending, to the upstream object identifier, the at least one zone-specific performance parameter. The present teachings also relate to a system for monitoring a production process, a dataset, use, a method for generating the dataset and a software program for the same.
Abstract:
The present teachings relate to a method for controlling a downstream production process for manufacturing a chemical product using at least one precursor material, the method comprising: providing a set of downstream control settings for controlling the production of the chemical product, wherein the downstream control settings are determined based on: a downstream object identifier; the downstream object identifier comprising precursor data; at least one desired downstream performance parameter related to the chemical product; downstream historical data; and wherein the set of downstream control settings is usable for manufacturing the chemical product at the downstream industrial plant. The present teachings also relate to a system, a use and a software product.
Abstract:
Described is a method of charging a sorption store with a gas. The sorption store comprises a closed container which is at least partly filled with an adsorption medium and has an inlet and an outlet which can each be closed by a shut-off element. The method comprises the steps: (a) closing of the outlet shut-off element and opening of the inlet shut-off element, (b) introduction of gas to be stored under a predetermined pressure through the inlet, (c) rapid opening of the outlet shut-off element with the inlet shut-off element open so that a gas flow having a predetermined flow rate is established in the container, (d) reduction of the flow rate as a function of the adsorption rate of the gas adsorbed in the store, and (e) complete closing of the outlet shut-off element.
Abstract:
The present teachings relate to a method for digitally tracking a chemical product manufactured at an industrial plant comprising at least one equipment; and, the product being manufactured by processing, via the equipment, at least one input material using a production process, which method comprises: providing, via an interface, an object identifier comprising input material data; wherein the input material data is indicative of one or more property of the input material, receiving, via the interface, process data from the equipment; the process data being indicative of the process parameters and/or equipment operating conditions that the input material is processed under, appending, to the object identifier, at least a part of the process data. The present teachings also relate to a system for digitally tracking a chemical product and a software product.
Abstract:
The present teachings relate to a method for controlling a production process, for manufacturing a chemical product, comprising: providing an upstream object identifier comprising input material data and at least one desired performance parameter related to the chemical product; determining a set of process and/or operation parameters based on the upstream object identifier and the at least one desired performance parameter; determining zone-specific control settings for each of the equipment zones based on the determined set of process and/or operation parameters and historical data; providing the zone-specific control settings for controlling the production of the chemical product related to the upstream object identifier. The present teachings also relate to a system for controlling a production process, a use of the control settings, and a software product for implementing the method steps disclosed herein.
Abstract:
The present invention concerns a method and a device for feeding at least one chemical substance into a main process stream. The method of the invention comprises the steps of providing a concentrated stream of said chemical substance, mixing said concentrated stream with a diluent stream to provided a diluted stream of said chemical substance, injecting said diluted stream of said chemical substance into said main process stream, wherein said mixing of said concentrated stream with said diluent stream is effected by injecting a jet of either one of said concentrated stream or said diluent stream into the respective other stream. The device of the invention comprises a first pipe segment (21) having a first inlet (22) for a first fluid and a first outlet (23) for a mixed fluid, a second pipe segment (24) having a second inlet (25) for a second fluid and a second outlet (26) connected to and leading into said first pipe segment (21) between said first inlet (23) and said first outlet (24), and first connection means (27) for connecting said first outlet (23) of said first pipe section (21) to a main pipe (14) of said main process stream, wherein said second pipe segment (24) comprises at least one nozzle (28) for generating a jet (29) of said second fluid arranged upstream of said second outlet (26).
Abstract:
Described is a method of charging a sorption store with a gas. The sorption store comprises a closed container which is at least partly filled with an adsorption medium and has an inlet and an outlet which can each be closed by a shut-off element. The method comprises the steps: (a) closing of the outlet shut-off element and opening of the inlet shut-off element, (b) introduction of gas to be stored under a predetermined pressure through the inlet, (c) rapid opening of the outlet shut-off element with the inlet shut-off element open so that a gas flow having a predetermined flow rate is established in the container, (d) reduction of the flow rate as a function of the adsorption rate of the gas adsorbed in the store, and (e) complete closing of the outlet shut-off element.