METHODS AND SYSTEMS FOR DECOMPOSING A FEEDSTOCK GAS

    公开(公告)号:US20240166508A1

    公开(公告)日:2024-05-23

    申请号:US18473941

    申请日:2023-09-25

    Abstract: A method of decomposing a feedstock gas includes introducing the feedstock gas into a mixing chamber and introducing a combustion gas into a combustion chamber connected to the mixing chamber. The combustion gas is combusted so as to produce combustion product gases. A first portion of the combustion products gases flows into the mixing chamber and mixes with the feedstock gas, and a second portion of the combustion products gases initially remains in the combustion chamber. At least some of the feedstock gas is decomposed as a result of the first portion of the combustion products gases flowing into the mixing chamber and mixing with the feedstock gas. At least some of the second portion of the combustion product gases is flowed into the mixing chamber, and the at least some of the second portion of the combustion product gases is mixed with undecomposed feedstock gas, so as to decompose at least some of the undecomposed feedstock gas.

    Device and method for magnetic field-assisted simulation of zero-microgravity fame synthesis of nanoparticles

    公开(公告)号:US11786882B2

    公开(公告)日:2023-10-17

    申请号:US18245331

    申请日:2022-04-27

    Abstract: A device for magnetic field-assisted simulation of zero-microgravity flame synthesis of nanoparticles includes a gradient magnetic field device, a combustor and a product collection device. The gradient magnetic field device is composed of two magnetic field devices arranged face to face. The combustor is located between the two magnetic field devices. The outlet of the combustor is vertically upward. The position is below the magnetic field center of the gradient magnetic field device. The body force acting on the flame and surrounding magnetic species thereof by the gradient magnetic field device counteracts the gravitational buoyancy lift effect, so that flame synthesis is carried out under a simulated zero/microgravity flame to prepare the nanoparticles. The device is able to use a gradient magnetic field to simulate the zero/microgravity flame on the ground to synthesize the nanoparticles under special flame characteristics, with reduced flame disturbance, improved stability, and no overheated region.

Patent Agency Ranking