Abstract:
A process for removing hydrogen sulfide and carbon dioxide from a fluid stream comprises a) an absorption step in which the fluid stream is contacted with an absorbent comprising an aqueous solution (i) of an amine of the general formula (I) in which R1, R2 and R3 are each independently selected from C1-4-alkyl and C1-4-hydroxyalkyl; each R4 is independently selected from hydrogen, C1-4-alkyl and C1-4-hydroxyalkyl; each R5 is independently selected from hydrogen, C1-4-alkyl and C1-4-hydroxyalkyl; X is OH or NH(CR1R2R3); m is 2, 3, 4 or 5; n is 2, 3, 4 or 5; and o is 0 or 1; and optionally (ii) at least one tertiary amine, where the molar ratio of (i) to (ii) is greater than 0.05; wherein at least 90% of the hydrogen sulfide is removed from the fluid stream and selectivity for hydrogen sulfide over carbon dioxide is not greater than 8, wherein a CO2- and H2S-laden absorbent is obtained; b) a regeneration step in which at least a substream of the CO2- and H2S-laden absorbent is regenerated and a regenerated absorbent is obtained; and c) a recycling step in which at least a substream of the regenerated absorbent is recycled into the absorption step a). The process allows a high level of hydrogen sulfide removal with a simultaneously high coabsorption of carbon dioxide.
Abstract:
A process for removing hydrogen sulfide and carbon dioxide from a fluid stream comprises a) an absorption step in which the fluid stream is contacted with an absorbent comprising an aqueous solution (i) of an amine of the general formula (I) in which R1, R2 and R3 are each independently selected from C1-4-alkyl and C1-4-hydroxyalkyl; each R4 is independently selected from hydrogen, C1-4-alkyl and C1-4-hydroxyalkyl; each R5 is independently selected from hydrogen, C1-4-alkyl and C1-4-hydroxyalkyl; X is OH or NH(CR1R2R3); m is 2, 3, 4 or 5; n is 2, 3, 4 or 5; and o is 0 or 1; and optionally (ii) at least one tertiary amine, where the molar ratio of (i) to (ii) is greater than 0.05; wherein at least 90% of the hydrogen sulfide is removed from the fluid stream and selectivity for hydrogen sulfide over carbon dioxide is not greater than 8, wherein a CO2- and H2S-laden absorbent is obtained; b) a regeneration step in which at least a substream of the CO2- and H2S-laden absorbent is regenerated and a regenerated absorbent is obtained; and c) a recycling step in which at least a substream of the regenerated absorbent is recycled into the absorption step a). The process allows a high level of hydrogen sulfide removal with a simultaneously high coabsorption of carbon dioxide.
Abstract:
A process for producing a deacidified fluid stream from a fluid stream comprising methanol and at least one acid gas, comprising a) an absorption step in which the fluid stream is contacted with an absorbent in an absorber to obtain an absorbent laden with methanol and acid gases and an least partly deacidified fluid stream; b) a regeneration step in which at least a portion of the laden absorbent obtained from step a) is regenerated in a regenerator to obtain an at least partly regenerated absorbent and a gaseous stream comprising methanol, water and at least one acid gas; c) a recycling step in which at least a substream of the regenerated absorbent from step b) is recycled into the absorption step a); d) a condensation step in which a condensate comprising methanol and water is condensed out of the gaseous stream from step b); e) a distillation step in which at least a portion of the condensate from step d) is guided into a distillation column to obtain a top stream comprising methanol and a bottom stream comprising water; which comprises recycling at least a portion of the bottom stream from step e) into the regenerator. An apparatus for deacidifying a fluid stream, comprising methanol and at least one acid gas, according to claim 1, comprising a) an absorber comprising an absorption zone, at least one feed for absorbent, a feed for the fluid stream to be deacidified, a liquid draw for the laden absorbent, a draw point for the deacidified fluid stream and optionally a rescrubbing zone with a feed for scrubbing agent; b) a regenerator comprising a regeneration zone, an evaporator, a feed for the laden absorbent, a liquid draw in the bottom of the regenerator and a gas draw in the top region of the regenerator; c) at least one top condenser connected to the gas draw of the regenerator, comprising a gas draw and a condensate outlet; and d) a distillation column comprising a condenser, an evaporator, a feed for the condensate outlet of the top condenser, a vapor draw in the top region of the column and a liquid draw at the bottom of the distillation column, wherein the regenerator has a feed connected to the liquid draw at the bottom of the distillation column.
Abstract:
An absorbent for selective removal of hydrogen sulfide from a fluid stream comprising carbon dioxide and hydrogen sulfide comprises a) an amine compound of the formula (I) in which X, R1 to R7, x, y and z are as defined in the description; and b) a nonaqueous solvent; where the absorbent comprises less than 20% by weight of water. Also described is a process for selectively removing hydrogen sulfide from a fluid stream comprising carbon dioxide and hydrogen sulfide, wherein the fluid stream is contacted with the absorbent. The absorbent features high load capacity, high cyclic capacity, good regeneration capacity and low viscosity.
Abstract:
An absorbent for selective removal of hydrogen sulfide from a fluid stream comprising carbon dioxide and hydrogen sulfide, which comprises a) 10% to 70% by weight of at least one sterically hindered secondary amine having at least one ether group and/or at least one hydroxyl group in the molecule; b) at least one nonaqueous solvent having at least two functional groups selected from ether groups and hydroxyl groups in the molecule; and c) optionally a cosolvent; where the hydroxyl group density of the absorbent ρabs is in the range from 8.5 to 35 mol(OH)/kg. Also described is a process for selectively removing hydrogen sulfide from a fluid stream comprising carbon dioxide and hydrogen sulfide, wherein the fluid stream is contacted with the absorbent. The absorbent features good regeneration capacity and high cyclic acid gas capacity.
Abstract:
A process for separating off acid gases from a nitrogen oxide-comprising fluid stream, wherein a) the fluid stream is brought into contact in an absorption zone with an aqueous absorbent which comprises at least one amino group-comprising compound, wherein a deacidified fluid stream is obtained, b) the deacidified fluid stream is brought into contact in at least one scrubbing zone with an aqueous scrubbing liquid and a de-aminated deacidified fluid stream is obtained, wherein the scrubbing liquid is recycled via at least one scrubbing zone, c) overflow from the at least one scrubbing zone is treated with UV light, and d) the UV-treated overflow is combined with the absorbent. The process permits the efficient degradation of the nitrosamines present in the absorbent.
Abstract:
Disclosed herein are a communication system, a monitoring system for in-situ monitoring of a substance used in a gas scrubbing process, and related methods. The monitoring system can be used to monitor the at least one substance and provide treatment data for treating the at least one substance. The communication system includes a cloud server, a first server, a second server, and a third server. The first and second servers respectively include first and second communication interfaces configured to provide spectral information to the cloud server. The cloud server is configured to generate a calibration model including at least one parameter; apply the calibration model to the spectral information provided by the second server, whereby at least one value for the at least one parameter is extracted; and provide the at least one value for the at least one parameter to the first server via the first communication interface.
Abstract:
A process for producing a deacidified fluid stream from a fluid stream comprising methanol and at least one acid gas, comprising a) an absorption step in which the fluid stream is contacted with an absorbent in an absorber to obtain an absorbent laden with methanol and acid gases and an least partly deacidified fluid stream; b) a regeneration step in which at least a portion of the laden absorbent obtained from step a) is regenerated in a regenerator to obtain an at least partly regenerated absorbent and a gaseous stream comprising methanol and at least one acid gas; c) a recycling step in which at least a substream of the regenerated absorbent from step b) is recycled into the absorption step a); d) a condensation step in which a condensate comprising methanol is condensed out of the gaseous stream from step b); wherein the regenerator additionally comprises a rescrubbing section, and the condensate from step d) is recycled into the regenerator partly in the upper region of the rescrubbing zone or above the rescrubbing zone.
Abstract:
The use of an amine of the formula (I) in which the R1 to R5 radicals are each as defined in the description, and an absorbent and a process for removing acidic gases from a fluid stream, especially for selectively removing hydrogen sulfide over carbon dioxide. The invention also relates to particular amines suitable for selective removal of hydrogen sulfide. Absorbents based on amines of the formula (I) have high selectivity, high loading capacity and good regeneration capacity.
Abstract:
A premixture for producing an absorbent for removing acid gases from a fluid stream containing a) at least a tertiary amine and/or a sterically hindered secondary amine; b) a dicarboxylic acid in an amount, calculated as neutralization equivalent based on the protonatable nitrogen atoms in a), of at least 30%, wherein the dicarboxylic acid has a solubility in water at a temperature of 20° C. of not more than 15 g of dicarboxylic acid per 100 g of water; and c) 20 to 80 wt % of water. Also described is a process for producing an absorbent from the premixture. The premixture is a transportable and readily handleable solution of a dicarboxylic acid having poor solubility in water for producing an absorbent for removing acid gases from a fluid stream.