Abstract:
A composite amine absorbent that absorbs at least one of CO2 and H2S in a gas includes: (a) a chain monoamine; (b) a diamine containing amino groups having the same number of substituents; (c) a chain diamine containing amino groups having different numbers of substituents; and (d) water.
Abstract:
Hydrogen sulfide is removed from a gas stream by bubbling a gas stream having ≥100 ppm hydrogen sulfide through a scavenging mixture. The scavenging mixture includes: 1) at least one sweetener selected from the group consisting of triazines, oxazolidines, hemiacetals, and mixtures thereof, and 2) at least one reaction catalyst selected from the group consisting of dipropyl amine (DPA), diethyl amine (DEA), dimethyl amine (DMA), pyrrole, and mixtures thereof. The scavenging mixture interacts with the hydrogen sulfide to produce a cleaned gas stream having ≤ 5 ppm hydrogen sulfide.
Abstract:
A process for removing sulfur dioxide from a feed gas stream, which comprises (i) contacting the feed gas stream with an aqueous lean absorbing medium comprising a chemical solvent comprising a regenerable absorbent, a physical solvent, and one or more heat stable salts. The regenerable absorbent is an amine. The ratio of the wt % of the physical solvent over that of the regenerable absorbent is 0.5 to 2.5. The ratio of the wt % of heat stable salts over that of the regenerable absorbent is 0.29 to 0.37. The pH of the lean absorbing medium is 6 or less. With the process SO2 can be selectively removed. When the absorbing medium is stripped, a reduced amount of energy is required as compared to known processes.
Abstract:
Methods of reducing the water content of a wet gas are presented. In one case, the method includes exposing the gas to an amine-terminated branched polymer solvent to remove a substantial portion of the water from the wet gas, exposing the diluted solvent to carbon dioxide to phase separate the solvent from the water, and regenerating the solvent for reuse by desorbing the carbon dioxide by the application of heat. In another case, the method includes exposing the gas to a cloud-point glycol solvent to remove a substantial portion of the water from the wet gas, heating the diluted solvent to above a cloud point temperature for the solvent so as to create a phase separation of the solvent from the water so as to regenerate the solvent for reuse, and directing the regenerated solvent to a new supply of wet gas for water reduction.
Abstract:
The present disclosure provides methods and apparatuses of recovering CO2 from a gas stream. The methods regenerate CO2 with high regeneration efficiencies, thereby lowering the overall energy cost for CO2 capture.
Abstract:
The present invention relates to a method for preparing a solid amine gas adsorption material. The method synthesizes a porous solid amine gas adsorption material that loads organic amine evenly. In the method, a certain amount of acidic gas is introduced while organic amine molecules are introduced into a silicate solution as template agents, which not only makes sizes of SiO2 pore channels homogeneous, but also makes organic amine molecules highly evenly distributed on a surface of SiO2. In addition, the acidic gas protects —NH2 groups of organic amine, and avoids —NH2 adhesion inactivation due to hydrogen bonding during the synthesis process of the material. The present invention also relates to a method for preparing a solid amine gas adsorption material after obtaining a silicate solution from fly ash. The solid amine gas adsorption material prepared has more stable and effective gas adsorption performance.
Abstract:
A carbon dioxide absorbent composition is described, including (i) a liquid, nonaqueous silicon-based material, functionalized with one or more groups that either reversibly react with CO2 or have a high-affinity for CO2, and (ii) a hydroxy-containing solvent that is capable of dissolving both the silicon-based material and a reaction product of the silicon-based material and CO2. The absorbent may be utilized in methods to reduce carbon dioxide in an exhaust gas, and finds particular utility in power plants.
Abstract:
The implementations described herein generally relate to methods and chemical compositions for scavenging sulfur-containing compounds, and more particularly to methods and compositions for scavenging, for example, H2S and mercaptans from gaseous sulfur-containing streams. In one implementation, a method for scavenging a sulfur-containing compound from a gaseous sulfur-containing stream is provided. The method comprises contacting the gaseous sulfur-containing stream with an effective amount of a multi-component scavenging system for scavenging the sulfur-containing compound. The multi-component scavenging system comprises at least one scavenger for scavenging the sulfur-containing compound and at least one hygroscopic agent. The gaseous sulfur-containing stream has an amount of water less than or equal to 100% relative humidity and the gaseous sulfur-containing stream comprises the sulfur-containing compound.
Abstract:
A process, system or apparatus for recovering C02 from a gas has an absorption section, cooling section, regeneration section and more than three heating sections and involves a split in the C02 rich stream from the first heating section. A solvent for recovering C02 from a gaseous mixture comprising a primary amino hindered alcohol or tertiary amine in combination with a derivative of piperazine with three or more amino groups as promoter and a carbonate buffer is also disclosed.
Abstract:
Compositions and methods related to the removal of acidic gas. In particular, the present disclosure relates to a composition and method for the removal of acidic gas from a gas mixture using a solvent comprising a blend of piperazine and at least one diamine or triamine.