Abstract:
A display panel has a display region and a peripheral region. The display panel includes a substrate, a first metal layer disposed on the substrate, a planarization layer disposed on a side of the first metal layer away from the substrate, and a retaining wall structure located in the peripheral region and surrounding the display region. The first metal layer includes a signal line pattern located in the peripheral region. The planarization layer includes an opening in the peripheral region. At least a portion of the retaining wall structure is located in the opening. The signal line pattern is provided with at least one through hole, an orthogonal projection of the at least one through hole on the substrate is located within an orthogonal projection of the opening on the substrate, and is at least located on a side of an orthogonal projection of the retaining wall structure on the substrate.
Abstract:
A pixel circuit includes a light-emitting device, a reset circuit, a write circuit, a compensation circuit, a light emission control circuit, and a drive circuit. The compensation circuit is configured to selectively transfer an uncompensated reference voltage or a compensated reference voltage to a third node, the compensated reference voltage being determined by the uncompensated reference voltage and a compensation voltage, the compensation voltage being related to a rated value of a power supply voltage. The light emission control circuit is configured to transfer a voltage at the third node to a first node to cause a change in voltage at the second node. The drive circuit is configured to control a magnitude of a drive current flowing through the light-emitting device based on the voltage at the second node and the power supply voltage.
Abstract:
The embodiments of the present disclosure propose a display control circuit, a display control method thereof and a display apparatus, so that power supply to the display driving circuit is controlled to be disabled when the display driving circuit is in the sleep-in mode and is controlled to be enabled when the display driving circuit is in the wakeup mode by setting a switch circuit in the display control circuit and turning on and turning off the switch circuit.
Abstract:
An organic light emitting diode display pixel, a display panel and a display device are provided. The organic light emitting diode display pixel comprises a red light emitting device, a green light emitting device and a blue light emitting device arranged side by side and disposed oblique with respect to a border of the pixel. The red light emitting device and the green light emitting device are located on both sides of the blue light emitting device, which has a length larger than those of the red one and the green one. The display pixel can prolong the service life of a display panel without reducing the total aperture ratio of pixels.
Abstract:
Disclosed are a pixel compensation circuit, a method for driving the same, an organic light-emitting diode display panel, and a display device, and the pixel compensation circuit includes: a threshold compensation module, a storage module, a light-emission control module, a driver transistor, and a light-emitting diode, where the threshold compensation module is configured to provide a control electrode of the driver transistor with voltage of a data signal terminal, and threshold compensation voltage in a data writing stage; the storage module is configured to store the voltage of the control electrode of the driver transistor in the data writing stage and a light-emission stage; and the light-emission control module is configured to connect a second electrode of the driver transistor with the light-emitting diode in the light-emission stage to drive the light-emitting diode connected with the driver transistor to emit light.
Abstract:
The present disclosure provides a test element group, an array substrate, a test device and a test method. The test element group includes an array of Thin Film Transistors (TFTs), in which first electrodes of the TFTs in each row are connected to a first connection end, second electrodes of the TFTs in each column are connected to a second connection end, and third electrodes of all of the TFTs in the array are connected to an identical third connection end. The first electrode, the second electrode and the third electrode correspond to the source electrode, the drain source and the gate source of the TFT.
Abstract:
The present disclosure provides an AMOLED pixel driving circuit, method and a display device. The AMOLED pixel driving circuit is for driving an organic light-emitting diode (OLED) and includes: a charge storage unit configured to be charged in a data writing stage and be discharged in a pixel lighting stage to light up the OLED; a data writing unit configured to write a data current in the data writing stage; a light-emitting control unit configured to control to enable a connection between the charge storage unit and the OLED in the pixel lighting stage. The AMOLED pixel driving circuit further includes a current amplification unit configured to, in the data writing stage, amplify the data current and charge the charge storage unit with the amplified data current.
Abstract:
The present disclosure provides a touch substrate, a touch display panel and a display apparatus. A line width of at least a part of a bridging electrode in a spacing region between a sub-electrode of a corresponding first touch electrode and a corresponding second touch electrode in a first direction is greater than a line width of the corresponding second touch electrode, so that a routing length of an edge of the bridging electrode in the spacing region can be increased, or so that a certain gap exists between the sub-electrode and the residual metal at the edge of the bridging electrode, the sub-electrode is insulated from the residual metal, the short circuit between the first touch electrode where the sub-electrode is located and the second touch electrode due to the metal residue can be avoided, and the touch quality of the touch substrate can be ensured.
Abstract:
The present disclosure provides an electrostatic protection circuit, a circuit board, and an electrostatic protecting method. The electrostatic protection circuit includes a first relay and a second relay, wherein a control terminal of the first relay and a control terminal of the second relay are configured to be connected to a power supply of a system circuit respectively, and wherein the first relay and the second relay are connected in series between the system circuit and a ground terminal to form a charge release path, and the first relay is switched from an open circuit state to a short circuit state when the system circuit is powered off, and the charge release path is in a turn-on state after the first relay is switched to the short circuit state, thereby releasing an electrostatic charge in the system circuit.
Abstract:
A method, a circuit and a display device for driving an organic light emitting diode, wherein a driving transistor (DTFT) for driving a display element is turned off by jumping one or more of a reference voltage input (Vref), a reset voltage input (Vinit) and a data signal input (Vdata) before beginning to output an EL high level (ELVDD) of a pixel compensation circuit and after beginning to output an EL low level (ELVSS), to overcome the splash screen phenomenon during power-up and direct current-direct current driving failure.