Abstract:
In some aspects, the disclosure is directed to methods and systems for coexistence management. A first access point operating in an unlicensed frequency band using a first RAT receives, from a second access point operating in the unlicensed frequency band using a second RAT, information regarding operation of the second access point in the unlicensed frequency band. It is determined, using the received information, that the first access point or the second access point is using a first share of the unlicensed frequency band that is below a predetermined threshold, indicating an imbalance of usage between the first RAT and the second RAT. A transmission parameter of the first access point for operating in the unlicensed frequency band using the first RAT is adjusted according to the determination. The first access point transmits the one or more packets using the adjusted transmission parameter, to cause the first access point or the second access point to use an updated share of the unlicensed frequency band that is closer to the predetermined threshold than the first share.
Abstract:
A method includes detecting, using a WiFi access point, channel use data indicating traffic on a plurality of channels of an unlicensed LTE band in a wireless network. The method further includes providing the channel use data to a Long Term Evolution (LTE) access point. The method further includes selecting, using the LTE access point, a channel for use in transmitting data by the LTE access point from among the plurality of channels based on the channel use data from the WiFi access point. The method further includes providing, from the LTE access point, an indication of an upcoming transmission configured to transmit data on the channel to the WiFi access point. The method further includes broadcasting one or more messages from the WiFi access point to one or more WiFi nodes, the one or more messages configured to prevent the WiFi nodes from transmitting on the channel.
Abstract:
Hybrid multi-cell channel estimation. At least two different operational modes associated with performing multi-cell channel estimation are combined and performed within different respective iterations of processing in order to generate a multi-cell channel estimate. A device, including at least one wireless interface to support communications with at least one other device and also including at least one processor to process signals received by or to be transmitted from, is operative to generate a multi-cell channel estimate corresponding to two or more respective cells with which the device may communicate. A first operational mode corresponds to time domain (TDOM) based per-tap serial interference cancellation (SIC), and a second operational mode corresponds to frequency domain (FDOM) based per-cell SIC. One implementation operates with no more than one iteration of TDOM based per-tap SIC, and no more than two iterations of FDOM based per-cell SIC.
Abstract:
The disclosure is directed systems and methods for providing robust coexistence for LAA-LTE, including physical layer enhancements and options to support robust coexistence for LAA-LTE, and deployment and evaluation scenarios and methods.
Abstract:
Systems and methods allow LAA LTE equipment to coexist with other services in the unlicensed band such as WIFI or WLAN services. Systems and methods use LTE reference signals in the unlicensed spectrum that are not continuous and can be interrupted by a WIFI signal or other services in the unlicensed band or use a dynamic LAA ON burst or window to provide the LTE reference signals in some embodiments. The systems and methods can detect the presence of LTE signals using a one or more of a number of techniques.
Abstract:
In some aspects, the disclosure is directed to methods and systems for coexistence management. A first access point is scheduled a time to begin transmission of a packet to a user device in an unlicensed frequency band using a first RAT. The time to begin the transmission is scheduled to avoid transmission overlap with a second access point using a second RAT in the unlicensed frequency band, and scheduled according to information from the second access point regarding operation in the unlicensed frequency band using the second RAT. One of the first and second RATs includes one of a WLAN RAT or a LTE based RAT, and another of the first and second RATs includes a remaining one of the WLAN RAT or the LTE based RAT, in one or more embodiments. The first access point receives updated information regarding operation in the unlicensed frequency band using the second RAT. Using the updated information, an updated time for the first access point to begin the transmission using the first RAT is determined, the updated time determined to avoid transmission overlap with the second RAT in the unlicensed frequency band. The first access point transmits, according to the determined updated time, the packet in the unlicensed frequency band using the first RAT.