Abstract:
Various methods and systems are provided for space, frequency and time domain coexistence of RF signals. In one example, among others, a communication device includes a coexistence manager capable of monitoring operating conditions of a cellular modem and a coexistence assistant capable of monitoring operating conditions of a wireless connectivity unit. The coexistence manager is capable of modifying operation of the modem and/or unit based on an operating condition change. In another example, a method includes detecting a change in antenna isolation and/or operating temperature of a FE filter, determining filtering characteristics of the FE filter based at least in part upon the change, and modifying communications of coexisting communication protocols based at least in part upon the filtering characteristics. In another example, a TX/RX configuration for coexisting communication protocols is determined and communications in a protocol is modified based at least in part upon the TX/RX configuration.
Abstract:
Various methods and systems are provided for time domain coexistence of RF signals. In one example, among others, a method includes obtaining access to a WLAN channel during a free period of a coexisting cellular connection, providing a RDG to allow another device to transmit for a duration corresponding to at least a portion of a TXOP, and receiving a transmission during the duration. In another example, a method includes obtaining access to a WLAN channel during a transmission period of a coexisting cellular connection and providing a protection frame to defer transmissions from another device for a duration corresponding to at least a portion of a TXOP. In another example, a method includes determining a shift of a BT transaction based at least in part upon a schedule of cellular communications and shifting at least a portion of the BT transaction based upon the determined shift.
Abstract:
A method includes detecting, using a WiFi access point, channel use data indicating traffic on a plurality of channels of an unlicensed LTE band in a wireless network. The method further includes providing the channel use data to a Long Term Evolution (LTE) access point. The method further includes selecting, using the LTE access point, a channel for use in transmitting data by the LTE access point from among the plurality of channels based on the channel use data from the WiFi access point. The method further includes providing, from the LTE access point, an indication of an upcoming transmission configured to transmit data on the channel to the WiFi access point. The method further includes broadcasting one or more messages from the WiFi access point to one or more WiFi nodes, the one or more messages configured to prevent the WiFi nodes from transmitting on the channel.
Abstract:
Various methods and systems are provided for time domain coexistence of RF signals. In one example, among others, a method includes obtaining access to a WLAN channel during a free period of a coexisting cellular connection, providing a RDG to allow another device to transmit for a duration corresponding to at least a portion of a TXOP, and receiving a transmission during the duration. In another example, a method includes obtaining access to a WLAN channel during a transmission period of a coexisting cellular connection and providing a protection frame to defer transmissions from another device for a duration corresponding to at least a portion of a TXOP. In another example, a method includes determining a shift of a BT transaction based at least in part upon a schedule of cellular communications and shifting at least a portion of the BT transaction based upon the determined shift.
Abstract:
Various methods and systems are provided for time domain coexistence of RF signals. In one example, among others, a method includes obtaining access to a WLAN channel during a free period of a coexisting cellular connection, providing a RDG to allow another device to transmit for a duration corresponding to at least a portion of a TXOP, and receiving a transmission during the duration. In another example, a method includes obtaining access to a WLAN channel during a transmission period of a coexisting cellular connection and providing a protection frame to defer transmissions from another device for a duration corresponding to at least a portion of a TXOP. In another example, a method includes determining a shift of a BT transaction based at least in part upon a schedule of cellular communications and shifting at least a portion of the BT transaction based upon the determined shift.
Abstract:
A technique to identify that a station is capable of transmitting a PHY-BRP packet for use in training a directional antenna. The PHY-BRP packet is transmitted, when requested to do so, by appending the PHY-BRP packet to a BRP-Response in order to associate source and destination information to the PHY-BRP packet.
Abstract:
In some aspects, the disclosure is directed to methods and systems for protocol coexistence. Within a frequency band of a wireless local area network (WLAN), a device implemented for operation in at least a non-WLAN protocol can determine that the frequency band is quiet at a first time instance. The device can transmit a message in WLAN protocol responsive to the determination and prior to operation in the non-WLAN protocol within the frequency band. The message can have a receiver address other than an address belonging to other devices operating within the frequency band.