Abstract:
Method and system to coat an expandable member of a medical device comprising a support structure to support the expandable member and an applicator positioned with at least one outlet proximate a surface of an expandable member. A drive assembly establishes relative movement between the at least one outlet and the surface of the expandable member to apply fluid on the surface of the expandable member along a coating path. A tracking mechanism maintains a substantially fixed distance between the at least one outlet and the surface of the expandable member during relative movement therebetween by displacing the at least one outlet relative to the expandable member.
Abstract:
Method of coating an expandable member is provided. The method comprises providing an expandable member having deflated and fully expanded configurations, and inflating the expandable member with a select amount of inflation medium, the select amount of inflation medium applied at a nominal pressure, disposing a therapeutic agent on at least a portion of the expandable member; and partially deflating the expandable member, wherein partially deflating includes releasing an initial amount of inflation medium from the expandable member such that the expandable member partially re-folds. The therapeutic agent can be dried on the expandable member, and a remaining amount of inflation medium can be withdrawn such that the expandable member resumes the completely folded configuration.
Abstract:
Method of coating an expandable member is provided. The method comprises providing an expandable member with a plurality of folds defined therein, the expandable member having a folded configuration and a fully expanded configuration at a rated nominal pressure. The expandable member is inflated to an initial pressure of from 10% to about 300% of nominal pressure. A therapeutic agent is disposed on at least a portion of the expandable member. The expandable member is partially deflated to an intermediate pressure by withdrawing an amount of inflation medium from the expandable member, and by applying an external force to the expandable member.
Abstract:
Method and system to coat an expandable member of a medical device comprising a support structure to support the expandable member and an applicator positioned with at least one outlet proximate a surface of an expandable member. A drive assembly establishes relative movement between the at least one outlet and the surface of the expandable member to apply fluid on the surface of the expandable member along a coating path. A tracking mechanism maintains a substantially fixed distance between the at least one outlet and the surface of the expandable member during relative movement therebetween by displacing the at least one outlet relative to the expandable member.
Abstract:
Method of coating an expandable member is provided. The method comprises providing an expandable member with a plurality of folds defined therein, the expandable member having a folded configuration and a fully expanded configuration at a rated nominal pressure. The expandable member is inflated to an initial pressure of from 10% to about 300% of nominal pressure. A therapeutic agent is disposed on at least a portion of the expandable member. The expandable member is partially deflated to an intermediate pressure by withdrawing an amount of inflation medium from the expandable member, and by applying an external force to the expandable member.
Abstract:
Various aspects described or referenced herein are directed to different methods, systems, and computer program products for implementing automated money laundering detection, notification, and reporting techniques implemented at casino gaming networks.
Abstract:
Embodiments of the invention contemplate a shadow ring that provides increased or decreased and more uniform deposition on the edge of a wafer. By removing material from the top and/or bottom surfaces of the shadow ring, increased edge deposition and bevel coverage can be realized. In one embodiment, the material on the bottom surface is reduced by providing a recessed slot on the bottom surface. By increasing the amount of material of the shadow ring, the edge deposition and bevel coverage is reduced. Another approach to adjusting the deposition at the edge of the wafer includes increasing or decreasing the inner diameter of the shadow ring. The material forming the shadow ring may also be varied to change the amount of deposition at the edge of the wafer.
Abstract:
Various aspects described or referenced herein are directed to different methods, systems, and computer program products for implementing automated money laundering detection, notification, and reporting techniques implemented at casino gaming networks.
Abstract:
Method of modifying the coating of a surface of a medical device by applying a coating to the surface of the medical device, exposing the medical device to an environmental condition that alters the coating morphology, and drying the coating on the medical device. The disclosed subject matter also provides a coated medical device whose one or more surfaces have been modified by this method.
Abstract:
System and method for coating an expandable member of a medical device comprising a support structure to support the expandable member and an applicator positioned with at least one outlet proximate a surface of an expandable member. A drive assembly establishes relative movement between the at least one outlet and the surface of the expandable member to apply fluid on the surface of the expandable member along a coating path. A positioning device is provided to determine the distance to the surface of the expandable member at a corresponding location and relays the information to a controller or the like to maintain a substantially fixed distance between the outlet of the applicator and the surface of the expandable member when in alignment with the corresponding location.