摘要:
A cache, system and method for reducing the number of rejected snoop requests. A “stall/reorder unit” in a cache receives a snoop request from an interconnect. Information, such as the address, of the snoop request is stored in a queue of the stall/reorder unit. The stall/reorder unit forwards the snoop request to a selector which also receives a request from a processor. An arbitration mechanism selects either the snoop request or the request from the processor. If the snoop request is denied by the arbitration mechanism, information, e.g., address, about the snoop request may be maintained in the stall/reorder unit. The request may be later resent to the selector. This process may be repeated up to “n” clock cycles. By providing the snoop request additional opportunities (n clock cycles) to be accepted by the arbitration mechanism, fewer snoop requests may ultimately be denied.
摘要:
A cache, system and method for reducing the number of rejected snoop requests. A “stall/reorder unit” in a cache receives a snoop request from an interconnect. Information, such as the address, of the snoop request is stored in a queue of the stall/reorder unit. The stall/reorder unit forwards the snoop request to a selector which also receives a request from a processor. An arbitration mechanism selects either the snoop request or the request from the processor. If the snoop request is denied by the arbitration mechanism, information, e.g., address, about the snoop request may be maintained in the stall/reorder unit. The request may be later resent to the selector. This process may be repeated up to “n” clock cycles. By providing the snoop request additional opportunities (n clock cycles) to be accepted by the arbitration mechanism, fewer snoop requests may ultimately be denied.
摘要:
A cache, system and method for reducing the number of rejected snoop requests. A “stall/reorder unit” in a cache receives a snoop request from an interconnect. Information, such as the address, of the snoop request is stored in a queue of the stall/reorder unit. The stall/reorder unit forwards the snoop request to a selector which also receives a request from a processor. An arbitration mechanism selects either the snoop request or the request from the processor. If the snoop request is denied by the arbitration mechanism, information, e.g., address, about the snoop request may be maintained in the stall/reorder unit. The request may be later resent to the selector. This process may be repeated up to “n” clock cycles. By providing the snoop request additional opportunities (n clock cycles) to be accepted by the arbitration mechanism, fewer snoop requests may ultimately be denied.
摘要:
According to a method of data processing, a predictor is maintained that indicates a historical scope of broadcast for one or more previous operations transmitted on an interconnect of a data processing system. A scope of broadcast of a subsequent operation is predictively selected by reference to the predictor.
摘要:
According to a method of data processing, a predictor is maintained that indicates a historical scope of broadcast for one or more previous operations transmitted on an interconnect of a data processing system. A scope of broadcast of a subsequent operation is predictively selected by reference to the predictor.
摘要:
A data processing system includes a plurality of processing units, including at least a local master and a local hub, which are coupled for communication via a communication link. The local master includes a master capable of initiating an operation, a snooper capable of receiving an operation, and interconnect logic coupled to a communication link coupling the local master to the local hub. The interconnect logic includes request logic that synchronizes internal transmission of a request of the master to the snooper with transmission, via the communication link, of the request to the local hub.
摘要:
A data processing system includes a plurality of processing units, including at least a local master and a local hub, which are coupled for communication via a communication link. The local master includes a master capable of initiating an operation, a snooper capable of receiving an operation, and interconnect logic coupled to a communication link coupling the local master to the local hub. The interconnect logic includes request logic that synchronizes internal transmission of a request of the master to the snooper with transmission, via the communication link, of the request to the local hub.
摘要:
A data processing system includes a plurality of processing units, including at least a local master and a local hub, which are coupled for communication via a communication link. The local master includes a master capable of initiating an operation, a snooper capable of receiving an operation, and interconnect logic coupled to a communication link coupling the local master to the local hub. The interconnect logic includes request logic that synchronizes internal transmission of a request of the master to the snooper with transmission, via the communication link, of the request to the local hub.
摘要:
In a data processing system, a plurality of agents communicate operations therebetween. Each operation includes a request and a combined response representing a system-wide response to the request. Within data storage in the data processing system, a data structure indicates a duration of a protection window extension for each of the plurality of agents. Each protection window extension is a period following receipt of a combined response during which an associated one of the plurality of agents protects transfer of coherency ownership of a data granule between agents. Each of the plurality of agents is configured with a duration of a protection window extension by reference to the data structure, and at least two of the agents have protection window extensions of differing durations. The plurality of agents thereafter employ the configured protection window extensions.
摘要:
A cache coherent data processing system includes a memory and at least first and second coherency domains that each include a respective one of first and second cache memories. A master in the first coherency domain selects a scope of an initial broadcast of an operation targeting a request address allocated to the memory from among a first scope including only the first coherency domain and a second scope including both the first and second coherency domains. The master selects the scope based, at least in part, upon whether the memory belongs to the first coherency domain and performs an initial broadcast of the operation within the cache coherent data processing system utilizing the selected scope.